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1 Introduction

Bootstrapping methods have so far been rarely used to evaluate spatial data

sets. Monchuk et al. (2011) is one of the rare empirical contributions to the

relevant spatial-econometrics literature who base their inference upon boot-

strapping methods1. As shown by several contributions2, for cross-sectional,

non-spatial data-sets the so-called wild bootstrap method based on restricted

residuals outperforms other methods, like the pairs bootstrap in terms of the

reliability of tests. In this paper we turn our attention to the question whether

we can find a similar conclusion for cross-sectional data. Based on an extensive

Monte Carlo (MC) study we find that also for spatial, cross-sectional data, the

wild bootstrap method proposed by Davidson and Flachaire (2008) based on

restricted residuals clearly outperforms asymptotic tests as well as compet-

ing bootstrap methods, like the pairs bootstrap. We additionally find that

based on restricted residuals, it is not always the case that asymptotic tests

are outperformed by pairs bootstrap methods. This latter finding directly gen-

eralizes the results obtained by Flachaire (2005a), who investigates the sample

performance of heteroskedastic-robust tests based on wild and pairs bootstrap

methods, but for the case of non-spatial, cross-sectional data, towards a spatial

dimension.

The structure of the paper is as follows. In the next section we introduce

the well-known spatial error model (SEM) for cross sectional data3 and discuss

the heteroskedastic-robust estimation of parameters. In section 3 we introduce

the simulation design. Section 4 deals with a short overview of the employed

bootstrap methods. Section 5 presents the structure of the MC simulation and

discusses the obtained results. Section 6 concludes.

1For instance, Anselin (1988) on p. 94 and Fingelton (2008) give an introduction to

bootstrapping in the context of spatial models.
2Among others, please refer to Davidson and Flachaire (2008), MacKinnon (2002),

Flachaire (2005a) and Flachaire (2005b).
3The focus on this specific spatial model is without loss of generality. The papers proce-

dures can be easily extended towards more general and complex spatial models.

2



2 First order Spatial Error Model (SEM)

Let us consider the linear heteroskedastic first order spatial error model (SEM)4

y = Xβ + u (1)

u = λWu + ε, λ ∈ (−1, 1) (2)

ε ∼ N (0,Σ) (3)

with X as a (N ×K) data matrix, y as a (N × 1) vector of observations.

W is treated as a non-stochastic, spatial (N × N) contiguity-matrix, u is a

(N × 1) vector of spatially correlated errors and ε is treated as a (N × 1)

vector with ε ∼ N (0,Σ), which are heteroskedastic but not correlated across

space. For the majority of cross-sectional spatial data evaluations it seems to

be appropriate to assume that the relevant data exhibits the tendency of being

heteroskedastic5. As known from the relevant econometrican literature, param-

eter inference deserves special precautions when the errors are heteroskedastic.

Ignoring the heteroskedastic structure of the errors generally results in incon-

sistent covariance matrix estimators of the ML-estimator of β, denoted as b.

Eicker (1963) and White (1980) solved this problem by proposing a Het-

eroskedasticity Consistent Covariance Matrix Estimator (HCCME), which al-

lows for asymptotically correct parameter inference regarding b given the er-

ror’s structure exhibit heteroskedastictiy of unknown form. The corresponding

heteroskedastic robust version of the variance-covariance matrix of b reads as

ˆV ar(β) = (X ′X)XΩ̂X(X ′X)−1, (4)

with Ω̂ as a (N × N) diagonal matrix with elements (Γlei)
2, whereas

e = [e1, ..., eN ]′ represents the (N × 1) vector of spatially-filtered ML resid-

uals based on model (1)-(3)6. Γl stands for a specific weighting scheme with

4Refer to Anselin (1988) on p. 35 for instance.
5For instance, refer to Monchuk et al (2011).
6In the following, we assume that e is spatially-filtered by employing a Cochrance-Orcutt

type transformation.
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l = {0, 1, 2, 3} characteristics. MacKinnon and White (1985) propose different

possible explicit forms of the HCCME. These are given as Γ0 ≡ 1, Γ1 ≡
√

N
N−K ,

Γ2 ≡ 1√
1−hi

and Γ3 ≡ 1
1−hi

, with hi ≡ xi(X
′X)−1xi as the i-th element of the

orthogonal projection matrix on the span of the X columns.

As further shown by MacKinnon and White (1985) and Chesher and Jewitt

(1987), Γ0 is outperformed by Γ1, Γ1 instead is outperformed by Γ2 and Γ3,

whereas it seems that Γ3 seems superior compared to Γ2 for some typical cases

with respect to the Error Rejection Probability (ERP), which is defined as the

difference between the true rejection probability of a test and its nominal level

α7.

Although the HCCME guarantees asymptotic valid results, in finite samples

however, even the HCCME can exhibit serious size distortions, notably with

the presence of high-leverage observations xi. Hence, as shown by Davidson

and Flachaire (2008), MacKinnon and White (1985), Godfrey and Orme (2001)

and Flachaire (2005a), hypothesis test (e.g. t-tests or F -tests) based on the

asymptotic HCCME can be misleading. From this point of view it is worth

examining whether tests based on bootstrap methods can improve the realibilty

of tests, given we are confronted with cross-sectional spatial data.

3 Model design

Our experiments are based upon model (1)-(3) with two fixed8 explanatory

variables xi = [x1i,x2i] = [1,x2i] and the true parameter vector β = [β1, β2]
′ =

[1, 0]′. We further assume that x2i is drawn from a standard log-normal distri-

bution to account for high leverage observations (Flachaire (2005a), Flachaire

(2005b)). To generate heteroskedastic errors, we assume that σ2
i = x2i2, ∀ i =

{1, ..., N}. εi is treated to be white noise with N (0, 1). We choose different

values for the spatial error parameter λ = {0.0, 0.4, 0.8} examining whether

7For instance, refer to Davidson and MacKinnon (1998) and Flachaire (2005a). A formal

definition of the ERP is given in section 5 of this contribution.
8We assume that both explanatory variables are treated to be fixed in repeated samples.

4



different spatial error degrees reflected by λ affect simulation results. As boot-

strap methods are designed for small samples, we choose N = 509.

To avoid severe experimental errors, the number of MC simulations is cho-

sen reasonably large with M = 4, 000 runs. The number of bootstrap repli-

cations is set to B = 39910. The assumed simulation environment mimics to

some extent Davidson and Flachaire (1996), Flachaire (2005a) and Lin et al.

(2011).

We wish to test the null hypothesis H0 := β2 = 0. For the null hypothesis,

we compute the HCCME-based t-static as

t =
x′2M 1y√

(x′2M 1Ω̃M 1x2)
, (5)

with M 1 = IN − 1(1′1)−11′ as the residual generating matrix. Based on

simulation results, we examine the finite sample performance of the t-test

represented by equation (5) and compare the performance of the asymptotic

test with its bootstrap counterparts based on their individual ERP.

4 Bootstrap methods

One of the widely known and applied bootstrap Data Generating Processes

(DGP)s are the residual bootstrap, pairs bootstrap and wild bootstrap. As

noted by MacKinnon (2009), in the case of heteroskedastic errors, the residual

bootstrap cannot be used, as this methods assumes independent and identically

distributed errors. As we assume heteroskedastic errors and high leverage ob-

servations (see section 2 and 3), in the following we exclusively concentrate on

the pairs and wild bootstrap. For the case of non-spatial models, Brownstone

9Please not that for the majority of evaluated spatial data-sets we can restrict the pa-

rameter space of λ towards λ ∈ [0, 1).
10As shown by Lin et al. (2011), who examine the size and power of bootstrap tests,

the spatial bootstrap tests stabilize for B = 399 or more replications. Overall, we perform

28, 752, 000 ML-regressions based upon model (1)-(3)! Hence, to conserve computational

space, we set M = 4, 000 and B = 399. The regressions are run employing Matlab R2011a

on a Pentium 7, 2.8 Ghz Windows 7 system.
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and Valletta (2001) and Horowitz (1997, 2000) concentrate on the question

whether the ERP of a specific test based on the HCCME differs significantly,

given one refers to the wild or pairs bootstrap. For cross-sectional models,

they observe that the wild bootstrap appears to outperform the pairs boot-

strap. However, as noted by MacKinnon (2002), the performance of bootstrap

methods directly depends on the model’s structure. Here, we provide addi-

tional evidence for this question with a focus towards spatial, cross-sectional

data. The next subsections deal with the introduction of the pairs and the

wild bootstrap.

4.1 Wild bootstrap

As noted by MacKinnon (2009) in section 6.5.3 on p. 196, ”[...] if the form

of heteroskedasticity is unknown, the best method that is currently available, at

least for tests on the coefficient vector β, appears to be the wild bootstrap”. To

initialize the wild bootstrap, which was originally developed in Liu (1988) and

based upon the contributions of Wu (1986) and Beran (1986), we start with

the following bootstrap DGP:

y∗i = xiβ + ΓleiΨi (6)

Ψi is treated as a random variable following a specific distribution G with

E(Ψi) = 0 and E(Ψ2
i ) = 1 for all i = {1, ..., N}. As recommended by Davidson

and Flachaire (2008), Ψi should follow a two-point Rademacher distribution

with

G1 : Ψi =

 1 with probability 0.5

−1 with probability 0.5
(7)

given the disturbances are not asymmetric. As shown by Davidson and Flachaire

(2008) and Godfrey and Orme (2001), the full Edgeworth expansion of the wild

bootstrap assuming G1 is considerably smaller compared to G2 for sufficiently
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small sample sizes and/or if observations with high leverage a present. How-

ever, if the distribution of the errors is asymmetric, G should be better defined

as follows (Mammen (1993)):

G2 : Ψi =

 −
(
√
5−1)
2

with probability (
√
5+1)

2
√
5

(
√
5+1)
2

with probability (
√
5−1)
2
√
5

. (8)

4.2 Pairs bootstrap

In the relevant literature, two versions of the pairs bootstrap are present:

those which can be traced back to Freedman (1981) and a version based upon

a modified re-sampling scheme, introduced by Flachaire (1999).

1. Pairs bootstrap proposed by Freedman (1981)

The pairs bootstrap which was originally advocated by Freedman (1981)

resamples directly from the row-elements of the data-matrix [y,X]. This

method assumes that each pair of observations [yi,xi1,xi2] is an inde-

pendent draw from a multivariate distribution (MacKinnon (2009)). It is

clear that the errors do not meet the requirement of being homoskedastic.

Given this procedure which is completely non-parametric, the bootstrap

sample is not based on a model which acknowledges the null hypothe-

sis (e.g. H0 := β2 = 0) as noted for instance by Flachaire (2005a) and

MacKinnon (2009). Hence, we have to modify the null hypothesis pre-

sented in section 3 towards H0 := β2 = b2, with b2 being the unrestricted

ML-estimate of β2 based on model (1)-(3)11.

2. Pairs bootstrap proposed by Flachaire (1999)

As the pairs bootstrap proposed by Freedman (1981) is somewhat un-

satisfactory regarding bootstrap testing, Flachaire (1999) introduces an-

other version of the pairs bootstrap. Instead of resampling from [yi,xi1,xi2],

he generates bootstrap samples by resampling [x∗i1,x
∗
i2, e

∗
i ] based upon

11For a detailed discussion, refer to the introduction of Hall (1992).
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[xi1,xi2,Γlei], with ei being the unrestricted ML-residual from estimat-

ing model (1)-(3). Hence, the bootstrap DGP reads as

y∗i = x∗i β̃ + e∗i , (9)

with β̃ being the vector of parameter estimates under the null hypothesis.

Obviously, in this case it is directly possible to test the null hypothesis

H0 := β2 = 0.

4.3 Pairs bootstrap versus wild bootstrap

The ideal bootstrap DGP perfectly mimics the real underlying DGP. However,

as noted by Flachaire (1999, 2005a), the pairs bootstrap proposed by Freed-

man (1981) suffers in two aspects: (1) as we draw regressors and the dependent

variable at the same time, we expect that regressors are not exogenous, and

hence, E[e∗|X∗] 6= 0. (2) The DGP is constructed without restricted parame-

ter estimates.

On the contrary, if the real underlying DGP assumes that regressors are ex-

ogenous, it is obvious that the bootstrap DGP cannot mimic the underlying

features of the real DGP satisfactorily. Obviously, Flachaire’s (1999) pairs

bootstrap method instead corrects for the second drawback sufficiently. It is

further obvious that only the wild bootstrap corrects for the two drawbacks

simultaneously. Hence, we should expect that based on the model (1)-(3),

parameter inference upon the wild bootstrap method should outperform pa-

rameter inference based upon the above introduced pairs bootstrap procedures.

As we will see later, our simulation study confirms this conjecture.

5 Simulation results

Before we introduce the specific structure of our MC experiment, we make

some preliminary remarks and provide a short discussion regarding the appro-

priateness of restriced and unrestricted residuals in the context of parameter

inference. Finally, we present the simulation results.
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5.1 Preliminary remarks

We follow Flachaire (2005a) and choose the Γ3 transformation of residuals for

our simulation study. Further, as recommended by Davidson and Flachaire

(2008) we use the so-called Rademacher distribution as introduced in section

4.1. Hence, the latter choice directly implies E[Ψ4
i ] = 1, and thus the fourth

order feature of the errors are retained. The spatial weight matrix W is

designed as a first-order contiguity matrix, which is row-standardized with

zero diagonal elements12.

5.2 Restricted or unrestricted residuals

A large body of literature deals with the question whether to use restricted

or unrestricted residuals for bootstrap based parameter inference. Davidson

and MacKinnon (1985) show that the reliability of asymptotic tests based on

restricted residuals generally outperforms the reliability of asymptotic tests

based on unrestricted residuals as the former slightly under-reject the null

hypothesis, whereas the latter severely over-reject the null. On the contrary,

van Giersbergen and Kiviet (2002) note that given the null hypothesis is not

true, unrestricted residuals tend to improve the power of a test. However,

based on simulation experiments, MacKinnon (2002) does not find support of

the latter conclusion. Davidson and Flachaire (2008) point to the fact that it

is wrong to mix restricted (for the bootstrap DGP) and unrestricted (in the

HCCME) residuals. Finally, Godfrey and Orme (2001) show that one does

not obtain good results in terms of a low ERP for the wild bootstrap, given

the HCCME is calculated with unrestricted residuals. In this study we follow

Flachaire (2005a) and investigate the performance of asymptotic and bootstrap

test statistics based on the HCCME, computed both with unrestricted and

restricted residuals.

12W remains fixed in repeated samples.
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5.3 Structure of the MC experiment

We examine the performance of the t-test with a MC experiment. Each MC

replication m = {1, ...,M} consists of the following steps presented below:

1. Based on an original data-set, estimate model (1)-(3) consistently with

ML. Store the obtained ML-estimate b and compute the m-th t-statistic

based on equation (5) for the null hypothesis H0 := β2 = 0, labeled as tm.

Further, obtain constrained parameter estimates b̃ and ẽ13. Compute the

m-th t-statistic based on the HCCME transformed constrained residuals,

labeled as t̃m.

2. For every m-th MC experiment, re-center and rescale ML residuals as

proposed by Lin et al. (2011). Generate bootstrap data-sets for the wild

and the two variants of the pairs bootstrap. Use the bootstrap samples

and re-calculate the constrained and unconstrained version of the test

statistic (5). Repeat this step B-times and obtain (B × 1)-vectors of

bootstrap statistics t∗m = [t∗m,1, ..., t
∗
m,399]

′ and t̃∗m = [t̃∗m,1, ..., t̃
∗
m,399]

′ based

on constrained and unconstrained residuals, ei and ẽi, respectively.

3. For the m-th MC experiment calculate the equal-tail p-values of the

bootstrap unconstrained and constrained t-statistic as follows:

p∗m = 2 min

(
1

B

B∑
b=1

I(t∗m,b ≤ tm),
1

B

B∑
b=1

I(t∗m,b > tm)

)
(10)

p̃∗m = 2 min

(
1

B

B∑
b=1

I(t̃∗m,b ≤ t̃m),
1

B

B∑
b=1

I(t̃∗m,b > t̃m)

)
, (11)

with I(·) representing an indicator function14.

Given m = {1, ...,M} MC experiments and a sequence of nomial levels

α = {0, 0.001, ..., 1}, we calculate the vectors of the true rejection probabilities

13The parameter estimates are constrained in the sense that H0 := β2 = 0 is true.
14See Davidson and MacKinnon (2006).
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as

1

M

M∑
i=1

I(p∗ < α), (12)

1

M

M∑
i=1

I(p̃∗ < α), (13)

with I(·) representing an indicator function for the constrained and uncon-

strained versions of the t-test. Finally, we calculate the difference between the

true rejection probabilities and the sequence of nominal levels α which results

in the ERP15 for the unconstrained and constrained version of the t-test:

ERP ≡ 1

M

M∑
i=1

I(p∗ < α)− α (14)

˜ERP ≡ 1

M

M∑
i=1

I(p̃∗ < α)− α. (15)

5.4 Simulation results

We refer to graphical methods proposed by Davidson and MacKinnon (1998) to

present the simulation results. In particular, the experimental-based ERPs are

visualized referring to p-value discrepancy plots as described by them. A test

is called reliable, if it rejects the null hypothesis at the nominal level α, given

the null hypothesis is true, and hence, the ERP is close to zero. Otherwise

we should expect a significant ERP. Based on the arguments given above, we

should expect that the ERP of the wild bootstrap should be closer to zero

than of the competing procedures.

[Figure 1 here]

Figure 1 shows the ERP of the asymptotic (asymp), the pairs bootstrap

advocated by Freedman (pairs2 ), the pairs bootstrap proposed by Flachaire

(1999), (pairs1 ) and the wild bootstrap (wild) tests based on the HCCME

calculated with both unrestricted and restricted residuals (re)16. Figure 1 (a)

15The ERP is also called size distortion.
16For instance, asymp re stands for the asymptotic t-test based on the HCCME computed

with restricted residuals.

11



represents the ERP of the t-test for λ = 0.0, figure 1 (b) shows the ERP of

the t-test for λ = 0.4, and finally, figure 1 (c) reflects the ERP of the t-test for

λ = 0.8.

Davidson and MacKinnon (1985) and Flachaire (2005a) show for a non-

spatial, cross-sectional analysis that for a small nominal level α, asymptotic

tests based on unrestricted residuals tend to over-reject the null hypothesis,

whereas asymptotic tests based on restricted residuals under-reject the corre-

sponding null hypothesis. As shown in the first two columns of the next table,

we can also confirm these results for a spatial, cross-sectional setup.

Further we can observe that for the wild bootstrap we have a better control

over the ERP if we refer to tests based on HCCME computed with restricted

residuals: As mentioned above, for all examined cases of the spatial error pa-

rameter λ, we observe that the wild bootstrap based on restricted residuals

exhibits smaller size-distortions compared to the wild bootstrap with unre-

stricted residuals. However, increasing the spatial error influence λ tends to

deteriorate the ERP of the t-test based on the wild bootstrap. Nevertheless,

even for a severe spatial error influence (e.g. λ = 0.8), we still observe that

t-tests based on the wild bootstrap exhibit the smallest ERP compared to their

competitors. As further pointed out by Davidson and MacKinnon (2006), the

ERP differences between competing tests can be directly translated into power

differences of the same magnitude. Hence, for the further analysis we make use

of the restricted residuals. As we are primarily concerned with small nominal

levels in practical applications, we report the ERPs for α = 0.05 in table (1)

for different degrees of spatial error influences λ.

As we can directly observe from table (1), for small nominal levels (e.g.

α = 0.05) we conclude that in terms of reliability, the wild bootstrap based

t-test clearly outperforms the asymptotic as well as the competing bootstrap

methods. Further from reflecting figure (1), we can observe that even if we

use restricted residuals, we cannot say that for all nominal levels α the asymp-

totic test is outperformed by the bootstrap tests. Only the wild bootstrap

12



λ asymp asymp re wild re pairs1 re pairs2 re

0.00 0.0977 -0.0480 0.0144 -0.0480 -0.0361

0.40 0.0754 -0.0483 -0.0051 -0.0488 -0.0473

0.80 0.0577 -0.0483 -0.0176 -0.0490 -0.0490

Table 1:

ERPs of the HCCME based t-test at α = 0.05% for N = 50, M = 4, 000 and B = 399

test clearly outperforms not only the asymptotic test but also its bootstrap

competitors. This conclusion is best visualized for the case of absence of spa-

tial correlation in the errors (λ = 0): if we look at figure (1) (a), we observe

a nearly perfect control of the wild re for all nominal levels. This qualita-

tively coincides with the findings of Flachaire (2005a) for a pure non-spatial,

cross-sectional setup.

6 Concluding comments

Bootstrapping methods suggest an appealing method for reasonable spatial

model’s parameter inference. In this paper we have discussed the finite-sample

performance of a heteroskedasticity robust t-test based on a cross-sectional,

spatial data environment. We find that even for a spatial data-environment,

the wild boostrap method wild re advocated by Davidson and Flachaire (2008)

always provides a significant better performance than competing procedures,

such as the pairs bootstrap or other versions of the wild bootstrap. Further,

we find that boostrap methods perform better than asymptotic tests based

on unrestricted residuals. In line with the findings of Flachaire (2005a) for

non spatial, cross-sectional data, the pairs bootstrap does not necessarily per-

form better in terms of the ERPs than asymptotic tests based on restricted

residuals. In a nutshell, the simulation results strongly suggest to base param-

eter inference on the wild bootstrap method recommended by Davidson and

Flachaire (2008).
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