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Abstract

Polynomial chaos expansion (PCE) provides a method that enables the user to rep-
resent a quantity of interest (QoI) of a model’s solution as a series expansion of un-
certain model inputs, usually its parameters. Among the QoIs are the policy function,
the second moments of observables, or the posterior kernel. Hence, PCE sidesteps the
repeated and time consuming evaluations of the model’s outcomes.

The paper discusses the suitability of PCE for computational economics. We, there-
fore, introduce to the theory behind PCE, analyze the convergence behavior for differ-
ent elements of the solution of the standard real business cycle model as illustrative
example, and check the accuracy, if standard empirical methods are applied. The
results are promising, both in terms of accuracy and efficiency.
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and detailed remarks on different versions of this article. We thank Michel Bauer for initial ideas and
continuing discussions.



1 INTRODUCTION

At an abstract level, computational economic models are mappings from inputs of the
model to outputs of the model. The former are the model’s parameters, the latter depend
on the research question and comprise, e.g., the policy functions of economic agents, the
second-moments of model generated time series, or the likelihood implied by a given set of
observed data. The model’s parameters are typically unknown and plausible values must
be derived from observed data, or are even treated as random variables from the Bayesian
perspective. Either way, the uncertainty of parameters translates into uncertainty regard-
ing the model’s outcomes. Estimation methods, as the generalized method of moments,
the matching of impulse responses, or likelihood based methods as well as a careful study
of the sensitivity of the model’s outcomes for a set of different parameter values requires
numerous repeated solutions of the model. Depending on the complexity of the model,
estimation and sensitivity analysis can become a time consuming computational task. Poly-
nomial chaos expansion (PCE), as employed in other scientific disciplines, offers an elegant
way to deal with this problem.1

PCE is a method that depicts arbitrary elements of a model’s solution, the quantity of in-
terest (QoI), in terms of a series expansion of the model’s parameters. Given the respective
formulae, repeated evaluations are inexpensive in terms of computational time instead of
repeated, potentially time-consuming, solutions of the entire model. The present paper
provides a theoretical and practical primer of PCE for economists. Without limiting the
applicability for other purposes, we focus on parameter estimation of dynamic stochastic
general equilibrium (DSGE) models, as we are familiar with the required methods. To the
best of our knowledge, applications of PCE in this context have not yet been studied in
economic models.2

In its general form, the underlying theory of the method rests on the theory introduced
by Wiener (1938) and the Cameron and Martin (1947) theorem. Given a family of stochas-
tically independent and normally distributed random variables, which we call germs, the
theorem establishes the existence of an orthogonal decomposition—with identity in the L2

sense—of any random variable with finite second moments and measurable with respect
to the germs, into Hermite polynomials in the germs. If we identify the germs with (trans-
formations of) the model’s unknown parameters, and if the model’s outcome satisfies the
required conditions, which apply to most computational economic models, the theory jus-
tifies an approximation of the model’s outcome by a truncated series of polynomials in
the unknown parameters. The so-called truncated PCE can be constructed easily from a
limited number of model evaluations, and after construction of the PCE the model’s out-
come can be obtained uncostly by evaluation of the truncated series instead of repeated
solutions of the model.

Ghanem and Spanos (1991) provide first applications of the theory to the problem of
uncertain model parametrization. In such applications, we can typically restrict atten-

1See e.g. Kaintura et al. (2018) for a review on the increasing application of PCE in electronics and electrics.
2Harenberg et al. (2019) is the only study we are aware of which has studied PCE in the context of economic

models so far. However, different from our work they focus on applications of PCE for structural sensitivity
analysis.
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tion to the far easier case with a finite number of germs. In the one-dimensional case
where parametrization uncertainty is introduced by means of only one unknown param-
eter described by a random variable θ with (Borel) probability measure Pθ , the existence
of orthogonal decompositions is the direct consequence of the property that the (orthog-
onal) polynomials with respect to the inner product in L2(R,B(R), Pθ ) form a complete
orthogonal system in L2. Moreover, the property does not only hold for Hermite polynomi-
als and probability measures of normally distributed random variables but also extends to
other commonly used distributions and the corresponding orthogonal polynomials from
the Askey scheme. This extension, initially proposed by Xiu and Karniadakis (2002), is
also known as generalized polynomial chaos expansion. For a finite number of unknown
and stochastically independent parameters θi, the property also extends to tensor products
of the polynomials and the product probability measure. In consequence, any L2 mapping
can be represented by a Fourier series in the orthogonal polynomials and any random vari-
able with finite second moments which is measurable with respect to the θi can be written
as a series of polynomials in the θi.

For the problem at hand, the L2 mapping for which the Fourier series must be con-
structed is identified with the mapping from parameter values to the model’s outcome
Y . Moreover, the Fourier coefficients are defined by the inner product of this mapping
with the orthogonal polynomials. If the inner product cannot be computed analytically,
numerical integration rules like Gauss quadratures can be employed which, if the dimen-
sionality of unknown parameters is not too large, require only a comparably small number
of model evaluations. As the dimensionality of the problem becomes larger, sparse grid
methods, such as Smolyak-Gauss quadrature can help or, alternatively, the coefficients can
be obtained from least squares.

After construction of the truncated PCE, it can be used for inexpensive evaluations of the
model outcome. First, statistical properties of the model outcome can be derived directly
from the PCE and the parameters’ distributions. The statistical properties can then be used
to quantify the effects of parameter uncertainty. For example, the variance of the model
outcome can be used as a first indicator for a sensitivity analysis. Moreover, Harenberg
et al. (2019) propose a sensitivity analysis on the basis of Sobol’ indices which can be
obtained directly from the PCE. The analysis additionally provides necessary conditions for
parameter identification in structural estimations. Second, the Fourier expansion can also
be used as a pointwise approximation for the mapping between parameters and the QoI.
Thus, estimation methods which require repeated recalculations of the model outcome can
be sped up significantly. Since Bayesian inference naturally combines the specification of a-
priori parameter uncertainty in form of prior distributions with the necessity for repeated
model solutions, it provides an especially well-suited setting for the implementation of
PCE. The application of PCE in Bayesian inference was first analyzed by Marzouk et al.
(2007) in engineering but to the best of our knowledge the method has not yet been
studied in economic models.

We apply the method of PCE to the benchmark real business cycle (RBC) model, since
this model is suited as illustrative example due to its well-known and simplistic nature. We
analyze the convergence behaviour of the PCE—in the sense of the L2 norm of the approx-
imation error over the parameters’ support—as the degree of truncation is increased. Our
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analysis starts with an example where three parameters are assumed unknown, namely the
capital share in production, the coefficient of relative risk aversion and the autocorrelation
parameter of total factor productivity, and considers the PCEs of various model outcomes
including the model’s linear solution, a projection solution, the variables’ second moments
and the impulse response function. Although we assume rather ”loose” distributions for
the unknown parameters, we find linear convergence speed in all cases, and remarkably
well approximations can be obtained already with a rather small degree of truncation and
a small number of model evaluations. If the model outcome, e.g the linearized policy
function, has to be evaluated for a sample of 100,000 parameter values, the PCE with
truncation degree 7 provides an approximation with L2 error of 10−3 while the computa-
tional time for construction and evaluation is lower by the factor 30 compared to repeated
computations.

We extend our example to the higher-dimensional problem where all six model param-
eters are assumed unknown. Compared to full-grid quadrature rules, sparse-grid quadra-
ture rules and least squares provide less accurate derivations of the PCE coefficients. In
consequence, the approximated PCEs require a higher degree of truncation in order to de-
liver the same accuracy. However, they also require significantly less time for construction.
A comparison of computational time versus the approximation’s accuracy shows that the
PCE constructed from sparse-grid quadrature is most efficient followed by least squares.
Yet, for higher degrees of truncation, inaccuracies in the PCE coefficients derived from
least squares eventually become dominant and even reverse convergence.

Our analysis continues with Monte Carlo experiments as in Ruge-Murcia (2007) where
we gauge the quality of the model’s PCE when used for several empirical methods. More
specifically, we estimate the model’s parameters by generalized method of moments (GMM),
simulated method of moments (SMM), maximum-likelihood estimation (MLE) and Bay-
esian estimation (BE) but use PCE to evaluate the QoI for different parameter values.
Compared to the benchmark procedure of repeated solutions, we find that the PCE based
method is remarkably efficient and accurate. Estimates deviate only negligibly from the
benchmark procedure and most notable, the computation time can be reduced by 99 per-
cent for BE and by 50 percent for GMM, SMM and MLE.

The remainder of the paper is structured as follows. First, we give a simple example to
outline the concept of PCE in section 2. In section 3 we review the basic theory for the
existence of polynomial chaos expansions and present the most common practical meth-
ods to compute the PCE coefficients. Section 4 discusses different applications of the PCE,
either to evaluate statistical properties of the model outcome or for pointwise approxima-
tion of the mapping from the parameters to the model outcome. We particularly highlight
its application to construct surrogates for the model’s linear solution or for projection solu-
tions and to approximate gradients. In section 5, we apply the method to the benchmark
RBC model and discuss the basic results and potential drawbacks. Section 6 concludes.
More detailed derivations are found in the appendix. MATLAB® code is available from the
authors upon request.
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2 A SIMPLE EXAMPLE

Before introducing the theoretical framework of PCE, we first want to outline the concept
at hand of a simple example. Since our numerical analysis focuses on discretely-timed
models, our example considers the following system of linear first-order difference equa-
tions in two real-valued variables x1,t and x2,t ,

ϑx1,t+1 + x2,t+1 = x1,t ,

x1,t+1 + x2,t+1 = x2,t ,

for all t ∈ N, and given x1,0 and x2,0. Moreover, ϑ ∈ (0,1) is an unknown parameter. While
the variables’ explicit recursion can be derived straightforwardly here by

�

x1,t+1

x2,t+1

�

= H(ϑ)
�

x1,t

x2,t

�

, where H(ϑ) :=
�

h11(ϑ) h12(ϑ)
h21(ϑ) h22(ϑ)

�

=

� −1
1−ϑ

1
1−ϑ

1
1−ϑ

−ϑ
1−ϑ

�

,

the mapping ϑ 7→ H(ϑ) from the unknown parameter to the (linearized) policy can typ-
ically not be derived analytically, but can only be computed numerically, if the system of
difference equations is non-linear and stochastic. In consequence, if H(ϑ) needs to be com-
puted for different parameter values, the underlying numerical methods must eventually
be applied repeatedly. PCE, on the other hand, aims to represent the mapping ϑ 7→ H(ϑ)
as a truncation from the Fourier series

hi j(ϑ) =
∞
∑

n=0

ĥ(n)i j qn(ψ
−1(ϑ)),

where qn is the n-th polynomial from a family of orthogonal polynomials, ψ−1(ϑ) is a
transformation of the parameter space into the space of the polynomial orthogonal coun-
terpart’s argument, and ĥ(n)i j is the corresponding Fourier coefficient of the polynomial. The
truncated series expansion is constructed from a limited number of numerical evaluations
of the mapping as follows.

First, the uncertainty about the parameter is taken into account by describing it by a
random variable θ with suitable probability distribution Pθ . For the present example, sup-
pose that θ is uniformly distributed over the interval (0, b), 0 < b ≤ 1. Second, the
series expansion is constructed in a well-known family of orthogonal polynomials, which
satisfies orthogonality w.r.t. some weighting function w. Thereby, the appropriate family
of orthogonal polynomials is most conveniently chosen in such a way that the weight-
ing function w coincides with the probability density function of the unknown parameter.
However, in order to achieve conformity between the weighting function and the density
function, a (linear) transformation of the parameter typically becomes necessary. In the
present case, Legendre polynomials {Ln}n≥0 are orthogonal w.r.t. the weighting function
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w(s) = 1(−1,1)(s), i.e. they satisfy

∫

R
Ln(s)Lm(s)w(s)ds =

¨

0, if n 6= m,

‖Ln‖2 := 2
2n+1 , if n= m.

Hence, transformation of the unknown parameter θ to the so-called germ ξ by

ξ :=ψ−1(θ ) := 2
θ

b
− 1⇔ θ =ψ(ξ) =

(ξ+ 1)b
2

,

yields the desired result, and Legendre polynomials are orthogonal w.r.t. the probability
distribution Pξ of ξ. Given that b < 1, the mapping s 7→ hi j(ψ(s)) for each entry hi j of the
matrix H is square integrable w.r.t. Pξ and can be represented by a Fourier series of the
form3

hi j(ψ(s)) =
∞
∑

n=0

ĥ(n)i j Ln(s). (1)

Moreover, orthogonality implies that the Fourier coefficients ĥ(n)i j satisfy

ĥ(n)i j = ‖Ln‖−2

∫ 1

−1

hi j(ψ(s))Ln(s)ds.

Finally, numerical integration methods are generally required to compute the coefficients
ĥ(n)i j . For example, using Gauss-Legendre-quadrature with M nodes si and weights ωi

yields4

ĥ(n)i j ≈ ‖Ln‖−2
M
∑

i=1

hi j(ψ(si))Ln(si)ωi.

Table 1 shows for b = 0.9 and M = 5 the quadrature weights ωi, the nodes si, the
corresponding retransformed parameter values ϑi :=ψ(si), and for the matrix entry h11 the

3The details in which sense convergence of the series can be established are discussed in the next section.
4If we additionally write the transformation ψ between parameter and germ in terms of the Legendre

polynomials, i.e.

ψ(s) =
b
2

︸︷︷︸

=:ϑ̂0

L0(s) +
b
2

︸︷︷︸

=:ϑ̂0

L1(s),

we equivalently arrive at

ĥ(n)i j ≈ ‖Ln‖−2
M
∑

i=1

hi j

�

ϑ̂0 L0(si) + ϑ̂1 L1(si)
�

Ln(si)ωi .

Note that this expression is identical to the more general form in (6).
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Table 1: Example

i ωi si ϑi h11(ϑi)

1 0.2369 −0.9062 0.0422 −1.0441
2 0.4786 −0.5385 0.2077 −1.2621
3 0.5689 0 0.4500 −1.8182
4 0.4786 0.5385 0.6923 −3.2500
5 0.2369 0.9062 0.8578 −7.0314

evaluation h11(ϑi) =
−1

1−ϑi
. Together with L0(si) = 1, L1(si) = si,‖L0‖2 = 2, and ‖L1‖2 = 2

3 ,
one can therefore compute, e.g.,5

ĥ(0)11 ≈
1
2

5
∑

i=1

h11(ϑi)ωi = −2.55 and ĥ(1)11 ≈
3
2

5
∑

i=1

h11(ϑi)siωi = −2.70.

In this case, the computation of the Fourier coefficients ĥ(n)11 requires M = 5 (numerical)
evaluations of the mapping ϑ 7→ h11(ϑ). After computation of the first N + 1 Fourier
coefficients, one can use the truncated series expansion of (1), i.e.

h11(ϑ)≈
N
∑

n=0

ĥ(n)11 Ln(ψ
−1(ϑ)),

in order to (approximately) evaluate h11(ϑ) for arbitrary parameter values without fur-
ther need of direct numerical evaluations.6 Figure 1 shows a comparison between exact
evaluation of h11(ϑ) and the truncated PCE with truncation level N = 5.

Finally, note already here that an important restriction of the methods is the require-
ment that the mapping s 7→ hi j(ψ(s)) is square integrable w.r.t. Pξ, or equivalently w.r.t.
the weighting function w corresponding to the family of orthogonal polynomials. In the
present example, this condition is fulfilled for b < 1. Yet, if b = 1, the integrals from which
the coefficients are defined are not finite, e.g.,

ĥ(0)11 =
1
2

∫ 1

−1

−1

1− s+1
2

ds = −∞.

5For comparison, exact integration yields

ĥ(0)11 =
1
2

∫ 1

−1

−1

1− (s+1)b
2

ds =
ln(1− b)

b
= −2.56, ĥ(1)11 =

3
2

∫ 1

−1

−s

1− (s+1)b
2

ds =
6− 3b

b2
ln(1− b)+

6
b
= 2.71.

6Of course, an appropriate choice of the number M of quadrature nodes and, therefore, of the number of
numerical evaluations is necessary in order to derive the Fourier coefficients depends on the truncation
level N . More details on this topic are provided in the next section.
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Figure 1: Example: Exact Evaluation and PCE (numerical integration)

3 GENERALIZED POLYNOMIAL CHAOS EXPANSIONS

We begin by reviewing the basic idea and theory behind the concept of PCE. While PCE
proved useful for a variety of applications, we focus on their implementation to efficiently
evaluate computationally expensive model outcomes when one or more of the model’s
inputs, e.g. model parameters, are uncertain.

Notation and Preliminaries We consider a computational economic model where ϑi ∈
Θi,Θi ⊂ R, i = 1, . . . , k, denotes an arbitrary selection of k ∈ N parameters of the model.
Moreover, we are interested in some model outcome(s) denoted by a vector y ∈ Rm, m ∈ N.
The relation between the input parameters ϑi and the model outcome(s) y is determined
deterministically, i.e. repeated computation of y with the same inputs ϑi to the model
produces the same result.7 This mapping between the ϑi and y is described by

y = h(ϑ1, . . . ,ϑk)

where h: Θ → Rm,Θ =
�k

i=1Θi ⊂ R. Without loss of generality we consider the case
m = 1 in the following, and note that for m ≥ 2 all derivations can be applied separately
to each component yi of y , i = 1, . . . , m, in the same way.

Now further consider the case where the values ϑi of the model parameters are subject
to some uncertainty to the researcher. In order to account for this uncertainty, we switch
from the deterministic representation of the parameters to the perspective of describing
them by appropriately distributed random variables. Therefore, let (Ω,A , P) denote a
sufficiently rich probability space so that any uncertain model input parameter can be
described by some real valued random variable θi : Ω→ R, i = 1, . . . , k, where the real line
is equipped with the Borel sigma-algebra B(R). Moreover, let ξ1, . . . ,ξk denote a family
of stochastically independent random variables chosen by the researcher as a basis of the
desired polynomial expansions, the so-called germs. In applications, as will be described

7E.g., if y denotes some second moments of the model, these are derived either from available analytic
formulae from the (approximated) model solution or are computed from simulations with the same
sample of shocks.
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later, the germs are most commonly either set equal to the uncertain model parameters θi

or to some natural and convenient transformation of them. We assume:

1. The germs ξ1, . . . ,ξk cover the same stochastic information as the uncertain model
parameters, i.e.

σ(ξ1, . . . ,ξk) = σ(θ1, . . . ,θk),

where σ(·) denotes the sigma-algebra generated by the random variables.

2. All moments of each ξi exist, i.e. E[|ξi|n]<∞ for all i = 1, . . . , k and n ∈ N0.

Moreover, we write θ := (θ1, . . . ,θk): Ω → Rk and ξ := (ξ1, . . . ,ξk): Ω → Rk for the k-
dimensional random vector of the uncertain model parameters and for the random vector
of the germs, respectively, where Rk is also equipped with its Borel sigma-algebraB(Rk).
For each i = 1, . . . , k, let Pξi

:= P ◦ ξ−1
i denote the probability measure of ξi on (R,B(R))

and analogously let Pξ := P ◦ ξ−1 =
⊗k

i=1 Pξi
denote the product probability measure of

ξ on (Rk,B(Rk)). The Hilbert space (of equivalence classes) of square integrable real
valued functions on (R,B(R), Pξi

) is denoted by

L2
i := L2(R,B(R), dPξi

) :=

�

f : R→ R
�

� f is measurable and

∫

R
f 2 dPξi

<∞
�

,

where the inner product is defined by

〈 f , g〉L2
i

:=

∫

R
f g dPξi

= E[ f (ξi)g(ξi)] for f , g ∈ L2(R,B(R), Pξi
).

We use the notation ‖ · ‖L2
i

for the induced norm on L2
i . We introduce the analogous

notation, i.e. L2 := L2(Rk,B(Rk), dPξ), for the space of square integrable real valued
functions on (Rk,B(Rk), Pξ) and write 〈·, ·〉L2 and ‖ · ‖L2 for the inner product and for the
induced norm on L2. If the distributions of the random variables ξi possess probability
density functions wi : R→ R+, the inner products become

〈 f , g〉L2
i
=

∫

R
f (s)g(s)wi(s)ds,

and

〈 f , g〉L2 =

∫

R
. . .

∫

R
f (s1, . . . , sk)g(s1, . . . , sk)w1(s1) · . . . ·wk(sk)ds1 . . . dsk,

so that L2
i = L2(R,B(R), wi(s)ds) and L2 = L2(Rk,B(Rk), w(s)ds) where w is the joint

probability function w(s) :=
∏k

i=1 wi(si). Note that Assumption 2 is equivalent to the fact
that for each i = 1, . . . , k all univariate polynomials are included in L2

i or, again equiva-
lently, that all k-variate polynomials are included in L2.
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Since, by Assumption 1, each θi is σ(ξ)-measurable, there exist measurableψi : Rk→ R
which satisfy

θi =ψi ◦ ξ.

We writeψ := (ψ1, . . . ,ψk): Rk→ Rk so that θ =ψ◦ξ. Moreover, note that σ(ξ) = σ(θ )
also implies the existence of a measurable, inverse mappingψ−1 withψ◦ψ−1 =ψ−1◦ψ=
id. A further assumption we make is that

3. the second moment of each model input parameter exists, i.e. E[θ 2
i ] <∞ for i =

1, . . . , k. Equivalently, each ψi is square integrable on (Rk,B(Rk), Pξ), i.e. ψi ∈ L2

for all i = 1, . . . , k.8

Moreover, as the model input parameters θi are now treated as random, the model out-
come of interest is random. We therefore adapt its notation to Y : Ω → R. Yet, given
any elementary event ω ∈ Ω and corresponding realization θi(ω), the mapping between
the model parameters and the model outcome is still determined deterministically by
Y (ω) = h(θ1(ω), . . . ,θk(ω)), i.e.

Y = h ◦ θ = h ◦ψ ◦ ξ, for some h: Rk→ R.

The final assumption is that Y is a well-defined random variable with finite second mo-
ments, i.e.

4. h is measurable and h ◦ψ is square integrable on (Rk,B(Rk), Pξ), i.e. h ◦ψ ∈ L2.

3.1 Single Uncertain Parameter and Germ (k=1)

We begin our description with the simplest case with only one single uncertain input pa-
rameter θ and one single germ ξ, i.e. k = 1. In general, any arbitrary choice of the germ
that satisfies Assumption 2 implies that all polynomials are included in L2, and therefore
allows the construction of an orthogonal system of polynomials {qn}n∈N0

⊂ L2, i.e. a family
of polynomials where qn is of (exact) degree n and

〈qn, qm〉L2 = ‖qn‖2
L2δm,n for all m, n ∈ N0,

where δm,n denotes the Knonecker delta. This can generally be achieved by applying, e.g.,
the Gram-Schmidt process to the sequence of monomials.

In practice, the distribution of the uncertain input parameter is given and one is free
to set the germ. It is then convenient to define the germ in such way that i) an easy rep-
resentation θ = ψ(ξ) of the parameter in terms of the germ arises and ii) the family of
orthogonal polynomials in L2 corresponds to some well-known class of polynomials. Table
2 summarizes the natural choice of the germ and the corresponding family of orthogonal
polynomials when the input parameter is normal, uniform, Beta or (inverse) Gamma dis-
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Table 2: Overview: Common Distributions and Corresponding Germs and Orthogonal Polynomials
on L2

Distribution of θ Germ Orthogonal Polynomials
Family Parametric ξ ψ qn

Normal θ ∼ N(µ,σ2) ξ := θ−µp
2σ

ψ(s) = µ+
p

2σs (physicists) Hermite Hn

Uniform θ ∼ U(0, 1) ξ := 2θ − 1 ψ(s) = s+1
2 Legendre Ln

Beta θ ∼ Beta(α,β) ξ := 2θ − 1 ψ(s) = s+1
2 Jacobi J (β−1,α−1)

n

Gamma θ ∼ Gamma(α,β)a ξ := βθ ψ(s) = s
β General Laguerre La(α−1)

n

Inverse Gamma θ ∼ Inv-Gamma(α,β)a ξ := β
θ ψ(s) = β

s General Laguerre La(α−1)
n

a We use the scale-rate notation.

tributed. More details for these classes are given in Appendix A. In all of the cases presented
in Table 2 the respective families of orthogonal polynomials {qn}n∈N0

form a complete or-
thogonal system, i.e. lie densely in L2 = L2(R,B(R), Pξ) = L2(R,B(R), w(s)ds) where
w is the corresponding probability density of ξ.9 More generally, it follows from Riesz
(1924) that {qn}n∈N0

is a complete orthogonal system in L2 if and only if there exists no
other measure µ on (R,B(R)) which generates the same moments as Pξ, i.e. if and only
if there is no other measure µ such that
∫

R
sn dµ=

∫

sn dPξ = E[ξn] for all n ∈ N0.

If completeness of {qn}n∈N0
in L2 can be established, then Assumptions 3 and 4 guarantee

the existence of Fourier series expansions of ψ and h ◦ψ in the orthogonal polynomials,
i.e. there are coefficients {ϑ̂n}n∈N0

and { ŷn}n∈N0
, ϑ̂n, ŷn ∈ R, so that

ψ=
∞
∑

n=0

ϑ̂nqn in L2 = L2(R,B(R), Pξ),

h ◦ψ=
∞
∑

n=0

ŷnqn in L2 = L2(R,B(R), Pξ).

Note that identity and convergence is understood in L2 which also implies pointwise

8Note that the third assumption is already implied by the second if the germs are set equal to (some
polynomial transformation of) the model input parameters.

9See Szegő (1939) for proofs of completeness.
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convergence a.e. for a subsequence but not pointwise convergence.10 Moreover, since
Pθ = Pξ ◦ψ−1, also h=

∑∞
n=0 ŷn(qn ◦ψ−1) in L2(R,B(R), Pθ ).

Hence, the uncertain model input parameter θ = ψ ◦ ξ as well as our model outcome
Y = h ◦ψ ◦ ξ can both be expanded exactly by a polynomial series in the germ, i.e. by

θ =ψ(ξ) =
∞
∑

n=0

ϑ̂nqn(ξ) in L2(Ω,A , P), (2)

Y = h(θ ) = h(ψ(ξ)) =
∞
∑

n=0

ŷnqn(ξ) in L2(Ω,A , P). (3)

These series expansions are called the polynomial chaos expansions (PCE) of θ and Y
with respect to the germ ξ. Moreover, orthogonality of {qn}n∈N0

implies that the Fourier
coefficients are determined by

ϑ̂n = ‖qn‖−2
L2 〈ψ, qn〉L2 = ‖qn‖−2

L2

∫

R
ψqn dPξ, (4)

ŷn = ‖qn‖−2
L2 〈h ◦ψ, qn〉L2 = ‖qn‖−2

L2

∫

R
(h ◦ψ)qn dPξ. (5)

Now in practice, equations (2)-(3) justify approximations of the uncertain model input
parameter θ as well as of the model outcome Y by their truncated PCE, i.e. by

SN (θ ) = SN (ψ ◦ ξ) :=
N
∑

n=0

ϑ̂nqn(ξ),

SN (Y ) = SN (h ◦ψ ◦ ξ) :=
N
∑

n=0

ŷnqn(ξ).

The approximations then converge to the true random variables, SN (θ )→ θ and SN (Y )→
Y in L2 as N → ∞. Yet, equations (4)-(5) from which the coefficients are defined can
in general not be evaluated analytically. This involves a second approximation for the
coefficients ϑ̂n and ŷn. The literature on PCE provides a variety of approaches for this
task, from which we want to review the most popular ones.

3.1.1 Polynomial Chaos Expansion of the Model Parameters

Since the germ can be chosen in any desired way that satisfies Assumptions 1 and 2, the
following two opposing approaches can be pursued for its specification.

In the first approach, one directly fixes the transformation ψ between the uncertain
model parameter and the germ. The germ’s distribution then follows from the given dis-
tribution of the uncertain input parameter and the chosen definition ofψ. In principal any
choice ofψwhich satisfies Assumption 2 is possible. One could then construct the family of

10For conditions for pointwise convergence see e.g. Jackson (1941).
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orthogonal polynomials from the germ’s distribution and the expansion coefficients could
be derived by numerical integration of (4) up to any desired order. However, it is typically
far more convenient to choose ψ as a simple linear transformation between the uncer-
tain model parameter and the germ which results in a family of well-known orthogonal
polynomials in L2, see e.g. Table 2. In this case the expansion (2) collapses to

θ =ψ(ξ) = ϑ̂0 + ϑ̂1q1(ξ)

and the expansion coefficients ϑ̂0 and ϑ̂1 are already known exactly.
Conversely, the second approach fixes the distribution of the germ and constructs ψ in

such way that it is compatible to the given distribution of the uncertain parameter. This
can be achieved as follows. Let Fξ denote the desired (cumulative) distribution function
of ξ and Fθ the given distribution function of θ . Then setting the germ to11

ξ := F−1
ξ
◦ Fθ ◦ θ

yields the desired distribution for ξ. Conversely,

ψ= F−1
θ
◦ Fξ

and the expansion coefficients can again be computed from (4) by numerical integration.

3.1.2 Polynomial Chaos Expansion of the Model Outcome

While the expansion of the model parameter can be directly controlled by the appropri-
ate choice of the germ, the expansion of the model outcome of interest requires some
evaluations of the model.

Spectral Projection The first approach derives the polynomial chaos coefficients ŷn by
applying numerical integration methods to (5). For example, if ξ possesses a probability
density function w, then (5) becomes

ŷn = ‖qn‖−2
L2

∫

R
h(ψ(s))qn(s)w(s)ds.

Hence, a Gauss-quadrature with M nodes that corresponds to the weight function w and
to the orthogonal polynomials {qn}n∈N0

yields

ŷn ≈ ‖qn‖−2
L2

M
∑

i=1

h(ψ(si))qn(si)ωi ≈ ‖qn‖−2
L2

M
∑

i=1

h

�

N
∑

m=1

ϑ̂mqm(si)

�

qn(si)ωi, (6)

where si and ωi denote the quadrature’s nodes and weights, respectively. The Gauss-
quadrature rule with M nodes will require to evaluate the model outcome h(ψ(si)) ≈
11We denote by F−1 the quantile function.
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h
�∑N

m=1 ϑ̂mqm(si))
�

at each of the M nodes. Since the quadrature rule with M nodes
is exact for polynomials up to degree 2M − 1, the number of nodes should be chosen
appropriately. More specifically, if h◦ψ is assumed to be well approximated by its truncated
partial sum SN (h ◦ψ) of degree N , the integrand, i.e. h(ψ(s))qn(s), is well approximated
by polynomials of degree not larger than 2N for each n = 1, . . . , N . Hence, it should then
hold that M ≥ N + 1.

Least Squares The second approach treats the ignored higher terms ε :=
∑∞

n=N+1 ŷnqn(ξ)
of the truncated PCE as the residual in a linear regression

Y = h(ψ(ξ)) =
N
∑

n=0

ŷnqn(ξ) + ε.

One can then either draw M ∈ N i.i.d. sample points s j, j = 1, . . . , M , from the distribution
Pξ or select them according to regression design principles. After computing the corre-
sponding model outcomes Yj = h(ψ(s j)) ≈ h

�∑N
m=1 ϑ̂mqm(s j))

�

the expansion coefficients
are determined from

( ŷ0, . . . , ŷn) = argmin
ŷ0,..., ŷN

M
∑

j=1

�

Yj −
N
∑

n=0

ŷnqn(s j)

�2

.

The number of sample (design) points is recommended to be set twice or three times as
large as the number of unknown PCE coefficients in the literature, i.e. to M = 2(N +1) or
M = 3(N + 1).

Stochastic Galerkin For both methods discussed in the preceding paragraphs, the com-
putation of the expansion coefficients is detached from the underlying procedure from
which the model outcome is computed. This is different for the third method. Instead
of a more general discussion, we therefore only illustrate this method for the case where
the PCE of a model’s policy function is constructed. To simplify the notation, suppose
that the equations defining the model’s solution can be reduced to a sole Euler equation
in a single variable. Let S ⊂ Rs denote the model’s state space and let g : S → R denote
the variable’s policy function. The Euler equation is typically translated into a functional
(integral) equation for g, say

R(g, x) = 0 for all x ∈ S.

If the functional equation can not be solved analytically, a common approach is to con-
struct an approximation ĝ from linear combinations of some basis functions12, say Φ j, j =

12Most commonly these are selected either as (tensor products of) Chebyshev polynomials or as piecewise
linear or cubic polynomials.
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1, . . . , d, i.e.

ĝ(x) =
d
∑

j=1

y jΦ j(x).

In order to determine the coefficients y j in the approximation, which now serve as our
model outcome of interest and should not be confused with the Fourier coefficients of the
PCE, one can, for example, select d appropriate collocation points x1, . . . , xd ∈ S and solve
the non-linear system of equations given by

R

�

d
∑

j=1

y jΦ j, x i

�

= 0 for all i = 1, . . . , d

for y1, . . . , yd .
Now consider the case where one parameter is uncertain and hence described by the

random variable θ . If the model’s (reduced) Euler equation involves θ , then so does the
functional equation for g, i.e. we now write

R(g, x;θ ) = 0 for all x ∈ S.

Moreover, if one employs the above mentioned solution method, the coefficients y j will
typically also depend on θ , i.e. we have, in slight abuse of notation, Yj = h j(θ ). In partic-
ular, the mappings h j between the Yj and θ arise implicitly from the non-linear system of
equations

R

�

d
∑

j=1

YjΦ j, x i;θ

�

= 0 for all i = 1, . . . , d. (7)

In order to avoid the necessity for repeated and potentially computational expensive solu-
tions of this system of equations for different values of θ , one may want to find for each
Yj a PCE in terms of some chosen germ ξ13

θ =ψ(ξ) =
∞
∑

n=0

ϑ̂nqn(ξ),

Yj = h j(θ ) = h j(ψ(ξ)) =
∞
∑

n=0

ŷ jnqn(ξ).

The PCE of the model’s (approximated) policy function with respect to the germ ξ is then

13Note that in this case we have d model outcomes of interest, namely the coefficients Yj = h j(θ ) in ĝ.
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given by

ĝ(x;ξ) =
d
∑

j=1

YjΦ j(x) =
d
∑

j=1

∞
∑

n=0

ŷ jnqn(ξ)Φ j(x).

Moreover, the Fourier coefficients ŷ jn in the PCE can be derived by a Galerkin method
if we substitute the Yj in their implicit definition in (7) with their PCE and impute the
corresponding conditions

R

�

d
∑

j=1

∞
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

= 0 in L2 for all i = 1, . . . , d

⇔
�

R

�

d
∑

j=1

∞
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

, qm(ξ)

�

L2

= 0 for all i = 1, . . . , d and all m ∈ N0.

Hence, we can solve for the d(N + 1) unknown coefficients ŷ jn in the truncated PCE Yj ≈
∑N

n=0 ŷ jnqn(ξ) from the system of equations

0≈
�

R

�

d
∑

j=1

N
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

, qm(θ )

�

L2

=

=

∫

R
R

�

d
∑

j=1

N
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

qm(ξ)dPξ(ξ)

for i = 1, . . . , d and m= 0, . . . , N . The integral is computed numerically, either from Monte-
Carlo draws or from an appropriate Gauss quadrature. Moreover, ψ(ξ) can be substituted
by its truncated series expansion as previously described in subsection 3.1.1.

3.2 Multiple uncertain input parameters (k ≥ 2)

We now turn to the case where more than one input parameter is uncertain and where more
than one germ is used in the polynomial expansions. In brief, the stochastic independence
of the germs allows us to apply the procedure from the one-dimensional case to each of
the finitely many dimensions.

Since Assumption 2 guarantees that all polynomials are included in each L2
i , one can

again apply the Gram-Schmidt process to the sequence of monomials and construct for
each i = 1, . . . , k an orthogonal system of polynomials {qin}n∈N0

⊂ L2
i where qin is a poly-

nomial of (exact) degree n and

〈qin, qim〉L2
i
= ‖qin‖2

L2
i
δm,n for all m, n ∈ N0.
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For any multi-index α= (α1, . . . ,αk) ∈ Nk
0 we define the multivariate polynomial

qα(ξ) :=
k
∏

i=1

qiαi
(ξi).

Since stochastic independence of the ξi implies that Pξ = ⊗k
i=1Pξi

, the family of multi-
variate polynomials {qα}α∈Nk

0
then forms an orthogonal system in L2. Moreover, if for

each i = 1, . . . , k the orthogonal system {qin}n∈N0
is complete in L2

i , then {qα}α∈Nk
0

is also
complete in L2. In particular, this is satisfied if each θi is distributed according to one
of the distributions specified in Table 2 and if the germs ξi are set accordingly. Then,
since ψi ∈ L2 (Assumption 3) and h ◦ ψ ∈ L2 (Assumption 4), there exist coefficients
{ϑ̂iα}α∈Nk

0
⊂ R, i = 1, . . . , k, and { ŷα}α∈Nk

0
⊂ R such that

ψi =
∑

α∈Nk
0

ϑ̂iαqn in L2 = L2(Rk,B(Rk), Pξ), (8)

h ◦ψ=
∑

α∈Nk
0

ŷαqα in L2 = L2(Rk,B(Rk), Pξ). (9)

The second expansion can again be written equivalently as

h=
∑

α∈Nk
0

ŷα(qα ◦ψ−1) in L2(Rk,B(Rk), Pθ ).

Therefore, the parameters θi and the model outcome Y are again representable in L2 by a
PCE in the germs ξ through

θi =ψi ◦ ξ=
∑

α∈Nk
0

ϑ̂iαqα(ξ) in L2(Ω,A , P), (10)

Y = h ◦ θ = h ◦ψ ◦ ξ=
∑

α∈Nk
0

ŷαqα(ξ) in L2(Ω,A , P). (11)

Moreover, the expansion coefficients are determined by

ϑ̂iα = ‖qα‖−2
L2 〈ψi, qα〉L2 = ‖qα‖−2

L2

∫

Rk

ψiqα dPξ, (12)

ŷα = ‖qα‖−2
L2 〈h ◦ψ, qα〉L2 = ‖qα‖−2

L2

∫

Rk

(h ◦ψ)qα dPξ, (13)

where Pξ = ⊗k
i=1Pξi

implies that ‖qα‖L2 =
∏k

i=1 ‖qiαi
‖L2

i
.

Equations (12)-(13) guarantee that if the parameters θi and the model outcome Y are
approximated by their truncated PCE, the approximations converge to the true random
variables in L2 as the degree of the partial sums is increased. The truncation is typically
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introduced either by limiting the total degree of the multivariate polynomials

Stot
N (θi) = Stot

N (ψi ◦ ξ) :=
∑

α∈Nk
0,|α|≤N

ϑ̂iαqα(ξ),

Stot
N (Y ) = Stot

N (h ◦ψ ◦ ξ) :=
∑

α∈Nk
0,|α|≤N

ŷαqα(ξ),

where |α| :=
∑k

i=1αi, or by limiting the maximal degree in each component

Smax
N (θi) = Smax

N (ψi ◦ ξ) :=
∑

α∈Nk
0,‖α‖∞≤N

ϑ̂iαqα(ξ),

Smax
N (Y ) = Smax

N (h ◦ψ ◦ ξ) :=
∑

α∈Nk
0,‖α‖∞≤N

ŷαqα(ξ),

where ‖α‖∞ :=maxi=1,...,k αi.
In order to compute the expansion coefficients from their defining equations (12)-(13),

it is straightforward to adapt the methods from section 3.1.2 to the multidimensional case.
However, this typically introduces the curse of dimensionality.

First, this issue becomes particularly problematic if the integrals are computed by Gauss-
quadrature rules. If the mapping h ◦ψ can be well approximated by its truncated series
expansion SN , then the integrands (h ◦ψ)qα in (13) can be well approximated by multi-
variate polynomials which rise up to degree 2N in each component, indifferent from the
fact whether |α| ≤ N or ‖α‖∞ ≤ N is assumed. Since one-dimensional Gauss-quadrature
rules with M nodes provide exact integration rules for polynomials up to degree 2M − 1,
it is required to compute (13) by quadrature rules with M = N + 1 nodes in each of the
k dimensions. Hence, the model outcome must be evaluated for a total of (N + 1)k pa-
rameter combinations and the procedure becomes quickly inefficient as k rises. However,
sparse grid methods, as e.g. Smolyak-Gauss quadrature which is illustrated in Appendix B
and analyzed in the numerical example in section 5, can help to reduce the computational
effort that is required for similar integration quality.

Second, the burden of higher-dimensional parameter vectors also appears in similar
form if the PCE coefficients are determined by least squares. However, while the number
of coefficients which must be computed equals (N +1)k in Smax

N , the number of coefficients
grows less extremely in Stot

N where it is given by
�N+k

k

�

. Following the recommendation
that the number of sample points should be twice or three times as large as the number
of unknown coefficients, the model must be evaluated for 2

�N+k
k

�

or 3
�N+k

k

�

parameter
combinations in the latter case.

4 APPLICATIONS OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS

After its construction, the PCE of the model outcome can be used for computational in-
expensive evaluations of the model. On the one hand, statistical properties of the model
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outcome, as induced by the predefined distribution of the uncertain input parameters, can
be derived directly from the PCE. On the other hand, the expansion can also be used as a
pointwise approximation of the model outcome for different parameter values.

Evaluation of Statistical Properties Convergence in L2(Ω,A , P) of the series expansion
in (11) implies that the distribution of the model outcome Y can be equivalently character-
ized by its polynomial expansion. In particular, the mean and variance of Y follow directly
from the fact that convergence in L2 also implies convergence of the mean and variance
so that orthogonality of the polynomials (and q0 = 1 for 0 := (0, . . . , 0) ∈ Nk

0) yields

E[Y ] =
∑

α∈Nk
0

ŷαE[qα(ξ)] =
∑

α∈Nk
0

ŷαE[qα(ξ)q0(ξ)]=
∑

α∈Nk
0

ŷα〈qα, q0〉L2 = ŷ0,

and

Var[Y ] = E









∑

α∈Nk
0

ŷαqα(ξ)− ŷ0





2

= E









∑

α∈Nk
0\{0}

ŷαqα(ξ)





2

=

=
∑

α,β∈Nk
0\{0}

ŷα ŷβ〈qα, qβ〉L2 =
∑

α∈Nk
0\{0}

ŷ2
α
‖qα‖2

L2 .

Moreover, other statistical properties can be computed by Monte-Carlo methods. Large
samples of Y can be efficiently constructed by drawing from the germ’s distribution and
inserting the sample into the expansion of Y . Compared to traditional methods, repeated
and costly model evaluations can thus be avoided.

Using the Expansion as Pointwise Approximation for the Model Outcome A trun-
cated version of the Fourier series expansion (9) can also be used as a pointwise approxi-
mation for the mapping h between model input parameters and model outcome

h(ϑ)≈ SN (h ◦ψ)(ψ−1(ϑ)) =
∑

α∈Nk
0,|α|≤N

ŷαqα(ψ
−1(ϑ)). (14)

Note however that convergence of the series in L2 as N →∞ does not imply pointwise
convergence on the support of Pξ but only pointwise convergence a.e. for a subsequence.

The partial sum SN (h ◦ψ) is the orthogonal projection of h ◦ψ onto the subspace of
L2(Rk,B(Rk), Pξ) spanned by multivariate polynomials of total degree less or equal to N .
If the transformation ψ between germs and parameters is chosen linear, SN (h ◦ψ) ◦ψ−1

is also the orthogonal projection of h onto this subspace in L2(Rk,B(Rk), Pθ ).14 In the
sense of the induced metric, it is therefore the best approximation of h by multivariate

14Otherwise it is the orthogonal projection of h onto the subspace in L2(Rk,B(Rk), Pθ ) spanned by multi-
variate polynomials in ψ−1 of total degree less or equal to N .
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polynomials of total degree up to N , i.e. it minimizes the mean-squared error over the
support of Pθ .

Special Case: Surrogate of Model Solution Consider a discretely-timed model where
in any period t ∈ N the vector x t ∈ S ⊂ Rnx denotes the predetermined variables from the
state space S and yt ∈ Rny is a vector of the non-predetermined variables of the model.
Suppose that θ is a random vector of unknown parameters of the model, and for any
possible realization ϑ ∈ Θ the model solution is computed in terms of a policy function
g(.;ϑ): S→ Rnx+ny so that

�

x t+1

yt

�

= g(x t;ϑ).

If, for any arbitrary x ∈ S and for a suitable transformation ψ between parameters and
germs, the mapping ϑ 7→ g(x;ϑ) satisfies the sufficient condition in assumption 4, then
there exists a series expansion by orthogonal polynomials {qα} of the form

g(x ,ϑ) =
∑

α∈Nk
0

ĝα(x)qα(ψ
−1(ϑ)) in L2(Rk,B(Rk), Pθ ),

ĝα(x) = ‖qα‖−2
L2

∫

Rk

g(x ,ψ(s))qα(s)dPξ(s).

Perhaps the most prevalent approach in the literature to determine the model’s policy
function is to compute g from a linearized version of the model. In this case

g(x;ϑ) = A(ϑ)x ,

and numeric implementation of the methods proposed by Blanchard and Kahn (1980),
Klein (2000) or Sims (2002) allows to solve for the matrix A(ϑ) ∈ Rnx×(nx+ny ) given any
arbitrary but fixed ϑ ∈ Θ. Since the coefficients in the policy’s PCE are here determined by

ĝα(x) =

�

‖qα‖−2
L2

∫

Rk

qα(s)A(ψ(s))dPξ(s)

�

x =: Âαx ,

the series expansion of the linear policy function can be written as

g(x ,ϑ) =
∑

α∈Nk
0

ĝα(x)qα(ψ
−1(ϑ)) =





∑

α∈Nk
0

Âαqα(ψ
−1(ϑ))



 x .

Moreover, the Âα coincide with the expansion coefficients from the PCE of the model out-
come A(ϑ). Hence, the PCE of a linear policy is again linear and is represented by the
polynomial expansion of the matrix-valued function ϑ 7→ A(ϑ).

A second popular approach to compute the model’s policy function are projection meth-
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ods.15 In this approach g is constructed as a linear combination of some suitable basis
functions Φi by

g(x;ϑ) =
d
∑

i=1

ci(ϑ)Φi(x).

The coefficients in the PCE of g with respect to ϑ then satisfy

ĝα(x) =
d
∑

i=1

�

‖qα‖−2
L2

∫

Rk

qα(s) (ci(ψ(s)))dPξ(s)

�

Φi(x) =:
d
∑

i=1

ĉiαΦ(x),

and the expansion of g can therefore be written as

g(x ,ϑ) =
∑

α∈Nk
0

ĝα(x)qα(ψ
−1(ϑ)) =

d
∑

i=1





∑

α∈Nk
0

ĉiαqα(ψ
−1(ϑ))



Φ(x),

Now observe that the ĉiα coincide with the coefficients in the polynomial expansion of
the model outcome ci(ϑ), i.e. with the coefficients in the PCE of the coefficients of the
projection solution. Consequently, the PCE of g is again a linear combination of the basis
functionsΦi and the coefficients are represented by the polynomial expansion of ϑ 7→ ci(ϑ).

Surrogate for Gradients The truncated PCE in (14) may also be used to approximate
the derivatives of the mapping h between parameter values and model outcomes. More
specifically, the PCE provides the approximation

∂ h
∂ ϑi
(ϑ)≈

∑

α∈Nk
0,|α|≤N

ŷα

k
∑

j=1

∂ qα
∂ sk
(ψ−1(ϑ))

∂ψ−1
j

∂ ϑi
(ϑ).

This approximation can be useful if such derivatives must be evaluated at a potential large
number of points. One example may be the method proposed by Iskrev (2010) for con-
ducting local identification analysis which requires differentiation of the linearized policy
function with respect to the parameters.

5 NUMERICAL ANALYSIS

In this section we present the numerical implementation of a PCE for a benchmark RBC
model. First, we analyze the convergence behaviour of the series expansion for different
model outcomes of interest. More specifically, the model outcomes considered include the
linear solution, the second moments and the impulse response functions of the model’s

15See, for instance Judd (1996), Chapter 11, Heer and Maussner (2009), Chapter 6, Judd (1992) or Mc-
Grattan (1999).
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variables to a one time shock—both computed from the model’s linear policy—as well
as a global projection solution. Moreover, we compare different methods to compute the
PCE coefficients in terms of accuracy and efficiency. Finally, we perform Monte-Carlo ex-
periments where we evaluate the performance of the PCE for empirical applications as
matching moments and likelihood-based approaches.

5.1 The model

We consider a benchmark RBC model where the social planner solves the following maxi-
mization problem

max
Yt ,Ct ,Nt ,It ,Kt+1

U0 := E0

�∞
∑

t=0

β t C1−η
t (1− Nt)γ(1−η)

1−η

�

,

s.t. Yt = Ct + It ,

Yt = ezt Kζt N 1−ζ
t ,

Kt+1 = (1−δ)Kt + It ,

given K0, z0,

where Yt , Ct , Nt , It and Kt denote output, consumption, working hours, investment and
the capital stock, respectively. Moreover, the log of total factor productivity, zt , evolves
according to the AR(1) process

zt+1 = ρzt + εt+1, εt ∼ iidN(0,σ2).

The predetermined state variables x t and the non-predetermined control variables yt are

x t :=
�

Kt

zt

�

and yt :=







Yt

Ct

Nt

It






.

5.2 Convergence Behaviour

First, in order to study the basic convergence behaviour of the PCE for various model out-
comes in the benchmark RBC model, we consider an example where we set the uncertain
parameters to θ :=

�

ζ η ρ
�

. Moreover, we assume the following probability distribu-
tions for the (stochastically independent) unknown parameters

ζ∼ 0.15+ 0.3 · Beta(5,7), η∼ 1+ 7 · Beta(3,7), ρ ∼ 0.85+ 0.14 · U(0,1).

The probability density functions with support Θ := [0.15;0.45]× [1;8]× [0.85; 0.99] are
illustrated in Figure 2. The transformations ψi between unknown parameters and germs
are fixed as in Table 2 and the remaining parameters are calibrated as summarized in Table
3.
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Figure 2: Distributions of uncertain parameters

Table 3: Calibration I

Parameter Description Value

β discount factor 0.994
δ rate of capital depreciation 0.014
N steady state labor supply 0.3
σ standard deviation of innovations to log TFP 0.01

Linear Policy Function The first model outcome which we consider is the model’s linear
solution which is of the form
�

x t+1

yt

�

= A(ϑ)x t .

Given any parameter values ϑ ∈ Θ the matrix A(ϑ) =
�

ai j(ϑ)
�

i=1,...,6
j=1,2

∈ R6×2 can be easily

computed numerically from available methods. As described in section 4, the expansion
of the linear policy function is again linear and is represented by the polynomial expansion
of A(ϑ). Hence, our task is to construct for each mapping ai j : ϑ 7→ ai j(ϑ) the truncated
PCE16

a(N)i j (ϑ) := Stot
N (ai j ◦ψ)(ψ−1(ϑ)) =

∑

α∈N3
0,|α|≤N

âi jαqα(ψ
−1(ϑ)). (15)

Moreover, we first want to abstract from errors in the computation of the expansion co-
efficients âi jα and to focus on the convergence behaviour of a(N)i j → ai j in L2 as N →∞.
Therefore, we compute the coefficients from full-grid Gauss-quadrature rules with a suf-
ficiently large number of nodes which should guarantee that integration errors in (11)
(where now h = ai j) remain insignificant. More concretely, we apply N + 5 nodes in
each of the three one-dimensional quadrature rules. We compute the coefficients from the

16We only discuss the mappings ϑ 7→ ai j(ϑ) for i = 1,3, . . . , 6 and j = 1, 2 since the expansion of the
exogenous AR(1)-process (i = 2) w.r.t. ρ is trivial.
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quadrature rules and determine the L2 error from

‖a(N)i j − ai j‖L2 =

�∫

R3

�

a(N)i j (ϑ)− ai j(ϑ)
�2

dPθ

�1/2

≈

�

1
M

M
∑

i=1

�

a(N)i j (ϑ
(i))− ai j(ϑ

(i))
�2
�1/2

(16)

where we draw M = 105 iid sample points ϑ(i) from the distribution of θ . The results are
presented in Figure 3(a) in log10-base for N = 1 to N = 19 and suggest linear convergence
of the series expansions for each ai j. The L2 error for all components of the matrix already
falls to the order of magnitude of −3 for N = 7 and is as low as −6 for N = 19. Moreover,
Figure 3(b) also shows the time needed for all computations. In case of the PCE, the total
time reported includes i) the computation of expansion coefficients âi jα from the full-grid
quadrature rules which require (N +5)3 model evaluations and ii) the subsequent (trivial)
evaluation of the truncated PCE a(N)i j (ϑ

(i)) at the 100,000 sample points. For comparison,
we also show the computational time which is required to determine the model solution
ai j(ϑ(i)) repeatedly at all 100,000 sample points. Most importantly, since even for N = 19
the number of model evaluations for the construction of the PCE is significantly smaller
at 13824 than the number of evaluation points, the time required by the PCE remains less
than one-third of the time needed for repeatedly solving the model.

Second Moments The second model outcome we consider are the model’s second mo-
ments. More specifically, we consider the variables’ standard deviations and the correla-
tions obtained from the model’s linear policy. Instead of relying on simulations, we employ
available formulae for moments of first-order autoregressive processes to the linear solu-
tion. We proceed the same way as in the preceding paragraph and compute for each
moment, say x , a series expansion x (N) :=

∑

α∈N3
0,|α|≤N x̂αqα(ψ−1(ϑ)). Importantly, note

that we directly construct the PCE of the second moments, i.e. of the mapping ϑ 7→ x(ϑ).
An alternative approach to employ PCE for the second moments would be to first con-
struct the PCE of the linear policy and to subsequently use this PCE of the linear policy to
compute the second moments.

Figure 3(c) again shows linear convergence of the PCEs for each second moment. The
L2 error in the approximation of the model’s moments has fallen to the order of magnitude
of −3 by N = 7 and further declines to −6 by N = 19. Moreover, the computation time
of the PCE versus the time for repeated computations the model’s moments is illustrated
in Figure 3(d). For the same reasons as before, the time needed by the PCE remains
throughout significantly lower than the time required for repeated calculations.

Impulse Response Function The next model outcome we discuss are the variables’ im-
pulse response functions in response to a one time shock to TFP by one conditional stan-
dard deviation. For the sake of exposition, we only consider the variables’ outcomes for
the next four periods after the shock hits the economy and add the remark that the se-
ries expansions become more trivial for later periods where the variables converge back
to their stationary values. Hence, we construct PCEs for all variables’ outcomes, say X t+s,
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Figure 3: L2 convergence of PCE and computation time on an Intel® Core™i7-7700 CPU @
3.60GHz
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for periods s = 0, . . . , 4. Note again that the PCE is constructed directly for each mapping
ϑ 7→ X t+s(ϑ).

We show the L2 errors over the unknown parameters’ support in Figure 3(e). Conver-
gence is again linear as N →∞ and the L2 errors for all variables’ outcomes fall to the
order of magnitude of −5 by N = 19. Furthermore, the computation time of the PCE re-
mains throughout far below the time required for repeated computations of the model’s
IRFs.

Projection Solution The last model outcome for which we want to illustrate the conver-
gence behavior is the model’s projection solution computed from Chebyshev polynomials
as basis functions. More specifically, we define kt := ln(Kt/K

?(ϑ)) where K?(ϑ) is the
capital stock’s stationary solution and approximate the policy function for working hours
by

nt = g(kt , zt;ϑ) =
∑

i+ j≤4

ci, j(ϑ)Ti

�

2
kt − k

k̄− k
− 1

�

T j

�

2
zt − z

z̄ − z
− 1

�

,

where we further introduce the transformation nt := ln(Nt/(1−Nt)). The Ti are Chebyshev
polynomials of degree i and [k; k̄] × [z; z̄] = [ln(0.8);− ln(0.8)] × [−3 σp

1−ρ2
; 3 σp

1−ρ2
] is

the domain of the approximation g. The remaining variables are computed analytically
from kt , nt and zt and the coefficients ci, j(ϑ) are determined such way that the model’s
Euler equation holds exactly at 13 appropriately selected collocation points.17

We discussed in section 4 that the expansion of the projection solution is again a linear
combination of the same basis functions, i.e. of Ti1 Ti2 with i1+ i2 ≤ 4, and the coefficients
are given by the series expansions of the mappings ϑ 7→ ci, j(ϑ). Hence, we construct trun-
cated PCEs, c(N)i, j :=

∑

α∈N3
0,|α|≤N ĉi jαqα(ψ−1(ϑ)) from full-grid quadrature rules with N + 5

nodes in each dimension. The L2 error, ‖c(N)i, j − ci j‖L2 , in log10-basis is again decreasing
linearly as N →∞ as displayed in Figure 3(g) and the time for construction and evalua-
tion of the PCEs in Figure 3(h) remains throughout significantly smaller than the time for
repeated computations of the global solution.

5.3 Computation of PCE Coefficients

In the previous subsection our focus was on the convergence behavior of the PCE when
the degree of truncation N was increased. We therefore abstracted from possible errors
in the computation of the PCE coefficients and employed a full-grid quadrature rule with
sufficiently many nodes. While full-grid quadrature rules have the favorable property that
the number of nodes can be easily chosen in such way that they provide exact integration
rules for polynomials up to the desired degree, the number of nodes grows exponentially
in the dimension of the parameter vector. Hence, they may provide the most convenient
way for computation of the PCE coefficients when the number of unknown parameters is

17The collocation points are combinations of the zeros of the Chebyshev polynomials in the approximation.
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Figure 4: Distributions of uncertain parameters

not too large, but they become quickly ineffective in higher dimensional problems. If the
PCE coefficients are determined from alternative methods, the approximation error of the
feasible PCE does not only include the error from truncation of the series expansion but
additionally from a potentially less accurate approximation of the PCE coefficients that
becomes necessary.

In this section we now switch perspective and analyze the convergence behavior of the
PCE when its coefficients are computed from different methods. Next to the benchmark
full-grid quadrature rule, the PCE coefficients are additionally approximated by a sparse-
grid Smolyak quadrature rule and by least squares. Sparse-grid methods as well as least
squares give fundamentals for a rising number of more efficient alternatives. Kaintura
et al. (2018) and Harenberg et al. (2019) give a short discussion.

We apply our analysis to the PCE of the model’s linear solution but now consider a higher
dimensional problem. The vector of unknown parameters expands to θ :=

�

ζ η ρ β

δ γ
�

.18 The assumed distributions for ζ,η and ρ remain as before in Figure 2 and the
distributions of the additional unknown parameters are chosen as

β ∼ 0.9+ 0.09 · Beta(7,4), δ ∼ 0.01+ 0.01 · Beta(3,3), γ∼ 1.5+ 1 · Beta(5,4).

The probability densities for β ,δ and γ are visualized in Figure 4.
We compute the truncated PCE (15) for each mapping ai j : ϑ 7→ ai j(ϑ) in the linear policy

A(ϑ) =
�

ai j(ϑ)
�

i=1,...,6
j=1,2

∈ R6×2. The PCE coefficients are now determined either by i) a full-

grid Gauss quadrature rule with N + 1 nodes for each parameter (FGQ), ii) a sparse-grid
Smolyak-Gauss quadrature rule with linear growth where the level is set such way that the
one-dimensional quadrature rules include the nodes up to degree N + 1 (SGQ), iii) least
squares where the number of sample point is set either twice (LSMC1) or iv) three times
as large as the number of unknown PCE coefficients (LSMC2). After construction of the
truncated PCE by each of the four methods, we compute the PCE’s L2 error as in (16) from
a draw of M = 105 iid sample points from the parameter’s distribution.

Figure 5 shows the convergence of the truncated (approximated) PCEs with approxi-
mated coefficients for increasing N . As expected, the PCE constructed from a full-grid

18These are all of the model’s parameters except the standard deviation σ which does not affect the model’s
linear policy.
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Figure 5: L2 Convergence of PCE with approximated coefficients and computation time on an
Intel® Core™i7-7700 CPU @ 3.60GHz
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Figure 6: L2 Convergence of PCE with approximated coefficients and computation Time on an
Intel® Core™i7-7700 CPU @ 3.60GHz
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quadrature rule, which should provide the most accurate determination of the coefficients,
also shows the fastest convergence. It is followed by the PCE constructed from the sparse-
grid Smolyak quadrature rule while the PCEs where the coefficients are computed by least
squares perform worst. In fact, since inaccuracies in the coefficients of higher degree poly-
nomials may have large impact on the L2 error of the PCE,19 the PCEs computed from least
squares even show increasing errors for larger N . Yet, the necessary computations for the
full-grid quadrature method also require by far the most time. Figure 5(k) shows that
by N = 5 the construction and evaluation of the PCE already consumes more time than
100,000 repeated computations of the model solution. In comparison, the sparse-grid
quadrature rule is already significantly less computationally costly while the least-squares
methods are least expensive to compute and remain less time-consuming than repeated
computations of the model solution up to N = 10.

Finally, Figure 6 provides a more convenient illustration of the different methods’ effi-
ciency and plots the PCEs’ L2 error versus the required computation time, both in log10-
basis. According to this metric the full-grid quadrature method already performs worst
and requires the most computation time to reach the same quality of approximation as the
other methods. The most efficient method is the sparse-grid Smolyak quadrature rule. In
the present case with six unknown parameters, it reaches an approximation with L2 error
of order of magnitude of −4 before the required time for the PCE’s construction exceeds
the time for 100,000 repeated computations of the model solution.

5.4 Monte Carlo experiments for empirical methods

Design Our Monte Carlo study follows Ruge-Murcia (2007) and analyzes the perfor-
mance of PCE when applied to different estimation methods. We set the vector of uncer-
tain parameters to θ := (β ,ρ,σ) and choose the following probability distributions with
support Θ := [0.97; 0.999]× [0.75;0.995]× [0.004;0.012] for the unknown parameters:

β ∼ 0.97+ 0.029 · Beta(2,2), ρ ∼ 0.75+ 0.245 · Beta(2,2), σ ∼ 0.004+0.008 ·U(0,1).

Figure 7 illustrates the uncertain parameters’ probability densities and the remaining
parameters are calibrated as summarized in Table 4.

Matching Moments To estimate the parameters by matching moments, we choose the
following 5 targets: i) the variance of output and of working hours, ii) the autocovariance
(lag 1) of output and of working hours, and iii) the covariance between output and work-
ing hours. We draw a sample ϑ(i), i = 1, . . . , M , of size M = 1, 000 from the distribution of
the unknown parameters. In a first step, we compute the linear approximation of the pol-
icy function and the second moments for each ϑ(i) in the sample. Subsequently, we feed
the computed second moments as targets to an optimizer and (point) estimate the un-
known parameters by the method of matching moments. When minimizing the objective
function, we distinguish the following three cases in order to evaluate the model’s second

19Note that the norm of the orthogonal polynomials, ‖qα‖L2 , is increasing in |α|.
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Figure 7: Distributions of uncertain parameters

Table 4: Calibration of the model

Fixed Parameter Description Value

ζ Capital share 0.37
δ Rate of capital depreciation 0.014
N Steady-State labor supply 0.3
η Risk aversion 2

Uncertain Parameters Description Distribution

β Discount factor β ∼ 0.97+ 0.029 · Beta(2,2)
ρ Persistence ρ ∼ 0.75+ 0.245 · Beta(2,2)
σ Standard deviation σ ∼ 0.004+ 0.008 · U(0, 1)

moments for different parameter values: i) repeatedly solving the model and computing
the second moments (benchmark), ii) constructing the PCE of the linear approximation
of the policy function which we then evaluate and use to compute the variables’ second
moments or iii) constructing the PCE of the model’s second moments which we then evalu-
ate. We compute the second moments either from analytic formulae for the linear solution
(GMM) or from a simulation with T = 10,000 periods (SMM). We adapt the truncation
degree and quadrature level manually to achieve a sufficient accuracy to demonstrate the
capabilities.20 After obtaining the parameters’ estimate ϑ̂(i), we define the PCE error by
the deviation between the realized point estimate ϑ̂(i)PCE from a PCE based method and the
estimate ϑ̂(i)BM obtained from the benchmark method, i.e.

ε
(i)
j = 100

�

�ϑ̂
(i)
j,PCE − ϑ̂

(i)
j,BM

�

�

ϑ j,max − ϑ j,min
, j ∈ {β ,ρ,σ}, i = 1, ..., M ,

where j indicates the estimator of the particular parameter and ϑ j,max and ϑ j,min denote
the upper and lower bound of θ j ’s prior support.

Table 5 presents the results for GMM. We provide the computation time, the mean, the
median, the 5 percentile and the 95 percentile of the PCE error ε j from M = 1,000 esti-
mations. We find that the policy function’s PCE provides a remarkably well approximation

20We discuss heuristics for the choice of the truncation level below.
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Table 5: Monte Carlo Results - GMM

Benchmark (Repeated Solution)

Total average
Time: 00:01.25

PCE Policy Function

Total average PCE Estimation average
Time: 00:00.5 00:00.05 00:00.45

j β ρ σ

ε̄ j 0.04 0.01 0.02
ε j,.05 0.00 0.00 0.00
ε j,.5 0.03 0.01 0.01
ε j,.95 0.11 0.03 0.06

PCE Second Moments

Total average PCE Estimation average
Time: 00:03.44 00:03.11 00:00.33

j β ρ σ

ε̄ j 0.16 0.02 0.02
ε j,.05 0.02 0.00 0.00
ε j,.5 0.13 0.02 0.01
ε j,.95 0.43 0.06 0.09

Notes: Observable moments: variance of output, variance of hours, covariance between output and hours,
autocovariance of output (lag 1), autocovariance of hours (lag 1). ε̄ j: mean error, ε j,.05: 5 percentile of
error, ε j,.5: median of error, ε j,.95: 95 percentile of error. Errors of PCE based methods are expressed as
deviations from the benchmark method of repeatedly solving the policy function in percent of the range of
the parameter’s distribution. Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation
degree and quadrature level of the expanded policy function is 9 and of the second moments 19.
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Table 6: Monte Carlo Results - SMM

Benchmark (Repeated Solution)

Total average
Time: 01:12.82

PCE Policy Function

Total average PCE Estimation average
Time: 00:34.67 00:00.03 00:34.63

j β ρ σ

ε̄ j 0.10 0.02 0.03
ε j,.05 0.01 0.00 0.00
ε j,.5 0.08 0.01 0.01
ε j,.95 0.25 0.04 0.16

PCE Second Moments

Total average PCE Estimation average
Time: 00:58.03 00:57.73 00:00.31

j β ρ σ

ε̄ j 1.01 0.13 0.10
ε j,.05 0.10 0.01 0.01
ε j,.5 0.78 0.09 0.06
ε j,.95 2.62 0.35 0.30

Notes: Observable moments: variance of output, variance of hours, covariance between output and hours,
autocovariance of output (lag 1), autocovariance of hours (lag 1). ε̄ j: mean error, ε j,.05: 5 percentile of
error, ε j,.5: median of error, ε j,.95: 95 percentile of error. Errors of PCE based methods are expressed as
deviations from the benchmark method of repeatedly solving the policy function in percent of the range of
the parameter’s distribution. Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation
degree and quadratur level of the expanded policy function is 7 and of the second moments 13.
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which results in deviations from the benchmark mostly smaller than one permille in com-
parison to the range of the parameter’s distribution. Estimation errors rise if the model’s
second moments are directly approximated by PCE. However, the average relative errors
remain below two permille for all parameters and is almost always less than half a per-
cent, again relative to the parameter’s range. Using the PCE of the policy function reduces
the computation time on average by 60 percent while the PCE of the second moments is
more time consuming than the benchmark. Nevertheless, the pure estimation procedure
of the second moments’ PCE is on average more than 25 percent faster than the estimation
procedure of policy function’s PCE.

Since analytic formulae for the model’s moments are only available for the linear solu-
tion, GMM can only be employed for a linear approximation where computation time is
rarely a limiting factor. If the model demands non-linear solutions, one has to resort to
simulations in order to derive the model’s moments. However, the computation of non-
linear solutions and the simulation of model outcomes increase the computational effort
significantly. Working with the PCE of the policy function reduces the former burden while
working with the PCE of the second moments helps to reduce both burdens. The results
for our Monte-Carlo experiment with SMM are summarized in Table 6.

We find again that the policy function’s PCE provides a remarkably well approximation
which results in errors mostly smaller than 2.5 permille in comparison to the range of
the parameter’s distribution. Similar to GMM, errors rise if the model’s second moments
are directly approximated by PCE. However, the average relative errors remain around or
below one percent for all parameters and are almost always less than 2.5 percent. Using
the PCE of the policy function reduces the computation time on average by 50 percent
while the PCE of the second moments reduces them only by 20 percent. However, the
pure estimation procedure of the second moments’ PCE is on average more than 99 percent
faster than the estimation procedure of policy function’s PCE. This illustrates the efficiency
of PCE once the expansion of the QoI is calculated.

Likelihood-based Estimation We proceed to analyze the performance of PCE in MLE
and in BE. More precisely, we now draw a sample of size M = 500 from the distribution of
the unknown parameters. We approximate linearly the policy function and simulate a time-
series of output Yt for T = 200 periods for each ϑ(i) in the sample.21 We treat the simulated
time-series as observations from which we either (point) estimate the parameters by MLE
or conduct BE.

In the case of MLE we distinguish the following three methods to evaluate the obser-
vations’ likelihood for different parameter values: i) repeatedly solving the model and
computing the likelihood (benchmark), ii) constructing the PCE of the linear approxima-
tion of the policy function which we then evaluate and use to compute the likelihood or
iii) constructing the PCE of the likelihood which we then evaluate. In order to avoid prob-
lems with weak identification and in order to focus on the quality of PCE in the estimation
procedure, MLE is unusually applied to data in levels instead of the relative deviation from
steady state.

21More precisely, we generate a sample of size T = 300 and burn the first 100 observations.
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For BE the priors remain the same as in Table 4. Moreover, we again consider three
methods to evaluate the posterior where the first two are analogous to i) and ii) above
while iii) now involves constructing the PCE of the posterior’s kernel. For each of the
three methods we derive the posterior’s mean as well as several quantiles of the posterior
distribution from a standard random walk Metropolis Hasting (RWMH) algorithm with
100,000 draws from the posterior kernel.22 We measure the accuracy of the PCE based
methods for each statistic of the posterior, say x , by computing the deviation between
the statistic x̂ (i)j,PCE obtained from the PCE based method and the statistic x̂ (i)j,BM from the
benchmark method by

ε
(i)
j,PCE(x) = 100

�

� x̂ (i)j,PCE − x̂ (i)j,BM

�

�

ϑ j,max − ϑ j,min
.

Again, we adapt the truncation degree and quadrature level manually to achieve a suffi-
cient accuracy.

Table 7 displays the results from MLE. First, deviations between the estimates from
the method based on the policy function’s PCE, the likelihood function’s PCE, and from
the benchmark version remain remarkably small. The average error concerning the policy
function’s PCE estimation is smaller than one permille in comparison to the benchmark and
relative to the range of the parameter. Furthermore, as the 95 percentile is smaller than the
average, the error is mostly smaller than the average. The same holds for the estimation
with the likelihood function’s PCE. The average error is less than a half percent and the
median is less than one permille. Using the PCE of the policy function does not reduce
the computation time significantly, because the evaluation of the likelihood-function is the
time consuming part. For this reason, using the PCE of the likelihood-function is much
more efficient. The total procedure is about 50 percent faster than the benchmark on
average and the pure maximization procedure takes less than half a second on average.

Finally, Table 8 summarizes the results from the PCE based methods—approximation
of the policy function or of the kernel of the posterior—in BE. First, the errors between
the two approximations are virtually the same. The average errors of the means and the
medians are less than or equal to one fourth of a percent. While deviations slightly increase
for estimates of the posterior’s lower and upper quantiles, they remain almost always less
then 1.25 percent. Recognizing the fact that errors may be partly caused by the RWMH
algorithm itself, the deviations between the methods are negligible. Using the PCE of the
policy function does not reduce the computation time significantly, because the evaluation
of the likelihood-function is likewise the time consuming part. For this reason, the PCE
of the likelihood-function is much more efficient and nearly 99 percent faster than the
benchmark.23

Discussion Our study of PCE in estimation of a standard real business cycle (RBC) model
shows that the PCE based methods can accurately reproduce the same results as the bench-

22For the results we burn the first 50,000 draws.
23It must be mentioned that a higher number of parameters leads to a decrease in efficiency.
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Table 7: Monte Carlo Results - Maximum Likelihood Estimation

Benchmark (Repeated Solution)

Total average
Time: 00:20.60

PCE Policy Function

Total average PCE Estimation average
Time: 00:18.79 00:00.20 00:18.59

j β ρ σ

ε̄ j 0.07 0.08 0.01
ε j,.05 0.00 0.00 0.00
ε j,.5 0.00 0.00 0.00
ε j,.95 0.00 0.01 0.02

PCE Likelihood-function

Total average PCE Estimation average
Time: 00:10.81 00:10.36 00:00.44

j β ρ σ

ε̄ j 0.08 0.40 0.05
ε j,.05 0.00 0.00 0.00
ε j,.5 0.00 0.08 0.01
ε j,.95 0.03 0.75 0.09

Notes: Observable: Output Yt . ε̄ j: mean error, ε j,.05: 5 percentile of error, ε j,.5: median of error, ε j,.95: 95
percentile of error. Errors of PCE based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: mm:ss.f
on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the expanded
policy function is 9 and of the likelihood-function 13.

mark method of repeatedly solving the model. Gains in efficiency are larger than 50 per-
cent for matching moments if the PCE of the policy function is used and for MLE if the
PCE of the likelihood-function is used. Additionally, we show the gains in efficiency are
almost 99 percent for BE with the chosen numbers of parameters, truncation degree, and
quadrature level if the PCE of the posterior’s kernel is used.

In our specification of the prior distributions we shape and shift the distributions in order
to achieve compactness of the support. This procedure is unconventional in Bayesian
estimation of DSGE Models but helps for PCE. First and foremost, compactness of the
support helps to create a setting where the mapping from parameters to the model outcome
is square-integrable. Second, it is indispensable for the construction of the PCE coefficients
that the model outcome is well-defined and can be computed in a numerically stable way
at all nodes of the quadrature rules.24

24For example, larger values of the capital share quickly result in numerical problems for the computation
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Table 8: Monte Carlo Results - Bayesian Estimation

Benchmark (Repeated Solution)

Total average
Time: 08:36.11

PCE Policy Function

Total average PCE Estimation average
Time: 07:56.38 00:00.05 07:56.33

j x: Mean:
Quantile:

5% 10% 25% 50% 75% 90% 95%

β

ε̄ j(x) 0.05 0.12 0.08 0.05 0.04 0.05 0.07 0.10
ε j(x).05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
ε j(x).5 0.04 0.09 0.05 0.03 0.03 0.04 0.05 0.06
ε j(x).95 0.15 0.33 0.23 0.15 0.15 0.14 0.22 0.33

ρ

ε̄ j(x) 0.23 0.32 0.28 0.25 0.25 0.30 0.37 0.45
ε j(x).05 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
ε j(x).5 0.19 0.24 0.24 0.20 0.21 0.25 0.30 0.35
ε j(x).95 0.59 0.87 0.71 0.64 0.63 0.77 0.99 1.22

σ

ε̄ j(x) 0.09 0.11 0.10 0.09 0.09 0.11 0.15 0.20
ε j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ε j(x).5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.15
ε j(x).95 0.24 0.24 0.29 0.25 0.26 0.28 0.41 0.59

PCE Posterior-Kernel

Total average PCE Estimation average
Time: 00:16.82 00:11.00 00:05.82

j x: Mean:
Quantile:

5% 10% 25% 50% 75% 90% 95%

β

ε̄ j(x) 0.05 0.13 0.09 0.05 0.04 0.05 0.07 0.09
ε j(x).05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
ε j(x).5 0.04 0.08 0.06 0.03 0.03 0.03 0.04 0.06
ε j(x).95 0.16 0.40 0.25 0.15 0.13 0.14 0.19 0.30

ρ

ε̄ j(x) 0.21 0.32 0.27 0.24 0.24 0.27 0.36 0.44
ε j(x).05 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.03
ε j(x).5 0.16 0.25 0.21 0.20 0.19 0.20 0.27 0.33
ε j(x).95 0.59 0.86 0.69 0.59 0.60 0.72 1.01 1.19

σ

ε̄ j(x) 0.09 0.12 0.11 0.09 0.09 0.11 0.15 0.19
ε j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ε j(x).5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.13
ε j(x).95 0.24 0.32 0.30 0.25 0.24 0.29 0.42 0.55

Notes: Observable: Output Yt . ε̄ j: mean error, ε j,.05: 5 percentile of error, ε j,.5: median of error, ε j,.95: 95
percentile of error. Errors of PCE based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: mm:ss.f
on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadratur level of the expanded
policy function is 9 and of the second moments 13.
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In non-Bayesian approaches, the application of PCE demands the otherwise not neces-
sary specification of prior distributions. Moreover, L2 convergence of the series expansion
is achieved w.r.t. this prior distribution of the parameters. Estimation fails if the true pa-
rameter value is at odds to the choice of priors.

Similarly, Lu et al. (2015) show that the use of PCE for BE may be inaccurate in two cases.
First, the QoI is represented poorly by a low-order polynomial. Second, the posterior mass
is in other regions than the prior mass. To solve these problems, they suggest an adaptive
increasing polynomial order by verifying the accuracy at the next evaluation point. As our
manual adaption is usually not feasible as it requires the benchmark results, this is also
a practical method for determining the truncation level in general. In addition, a small
magnitude of the N th Fourier coefficient is an indicator for a sufficient high truncation
level.

Finally, the success of PCE is determined by the ratio of the number of model evaluations
necessary in order to compute the coefficients and the number of model evaluations in the
estimation method. Hence, PCE works best in cases with a small number of unknown
parameters where estimation demands many model evaluations, but PCE loses efficiency
in higher dimensional problems.

6 CONCLUSION

The present article discusses the suitability of PCE for computational models in economics.
For this purpose, we first provide the theoretical framework for PCE, review the basic the-
ory, and give an overview of common distributions and corresponding orthogonal polyno-
mials. We show how to evaluate statistical properties of the QoI from the PCE and how
to use the expansion as a pointwise approximation for the QoI. Further, surrogates for
a linearized policy function, for a policy function based on projection methods, and for
gradients of the model’s QoI are presented.

Second, we analyze PCE when applied to a standard RBC model and provide practical
insights. We study convergence behavior for various QoIs and compare the most common
methods to compute the PCE coefficients for a lower dimensional and a higher dimensional
problem. For the higher dimensional problem with six unknown parameters, sparse-grid
quadrature is the most efficient method compared to least squares and a full-grid quadra-
ture. Monte Carlo experiments for different empirical methods show that the PCE based
methods can accurately reproduce the same results as the benchmark method of repeatedly
solving the model. Gains in efficiency are large, especially for Bayesian inference.

Our discussion addresses potential drawbacks of the method. First, the efficiency of PCE
critically suffers from the curse of dimensions in problems with a large number of unknown
parameters. Further, poorly chosen priors may affect the accuracy of the estimates.

Despite of these potential drawbacks, PCE is a powerful tool for a broad set of applica-
tions. We hope that the article can encourage applications of PCE in economics, especially
for parameter inference in complex models where standard techniques are infeasible.

of the linear approximation of policy function.

38



REFERENCES

O. J. Blanchard and C. M. Kahn. The Solution of Linear Difference Models under Rational
Expectations. Econometrica, 48(5):1305–1311, July 1980.

R. H. Cameron and W. T. Martin. The Orthogonal Development of Non-Linear Functionals
in Series of Fourier-Hermite Functionals. Annals of Mathematics, 48(2):385–392, Apr.
1947.

R. G. Ghanem and P. D. Spanos. Spectral stochastic finite-element formulation for reliability
analysis. Journal of Engineering Mechanics, 117(10):2351–2372, 1991.

D. Harenberg, S. Marelli, B. Sudret, and V. Winschel. Uncertainty quantification and global
sensitivity analysis for economic models. Quantitative Economics, 10(1):1–41, Feb. 2019.

B. Heer and A. Maussner. Dynamic General Equilibrium Modeling: Computational Methods
and Applications. Springer Berlin Heidelberg, 2009. ISBN 9783540856856. URL https:
//books.google.de/books?id=ZdlEAAAAQBAJ.

E. P. Herbst and F. Schorfheide. Bayesian estimation of DSGE models. The Econometric
and Tinbergen Institutes lectures. Princeton University Press, Princeton ; Oxford, 2016.
ISBN 9780691161082.

N. Iskrev. Local identification in DSGE models. Journal of Monetary Economics, 57(2):
189–202, Mar. 2010.

D. Jackson. Fourier Series and Orthogonal Polynomials. Mathematical Association of Amer-
ica, 1941.

K. L. Judd. Projection methods for solving aggregate growth models. Journal of Economic
Theory, 58(2):410–452, December 1992.

K. L. Judd. Approximation, perturbation, and projection methods in economic analysis.
In H. M. Amman, D. A. Kendrick, and J. Rust, editors, Handbook of Computational Eco-
nomics, volume 1 of Handbook of Computational Economics, chapter 12, pages 509–585.
Elsevier, 1996.

A. Kaintura, T. Dhaene, and D. Spina. Review of polynomial chaos-based methods for
uncertainty quantification in modern integrated circuits. Electronics, 7(3):30, feb 2018.
doi: 10.3390/electronics7030030.

P. Klein. Using the generalized Schur form to solve a multivariate linear rational expec-
tations model. Journal of Economic Dynamics and Control, 24(10):1405–1423, Sept.
2000.

F. Lu, M. Morzfeld, X. Tu, and A. J. Chorin. Limitations of polynomial chaos expansions
in the bayesian solution of inverse problems. Journal of Computational Physics, 282:
138–147, feb 2015. doi: 10.1016/j.jcp.2014.11.010.

39

https://books.google.de/books?id=ZdlEAAAAQBAJ
https://books.google.de/books?id=ZdlEAAAAQBAJ


Y. M. Marzouk, H. N. Najm, and L. A. Rahn. Stochastic spectral methods for efficient
bayesian solution of inverse problems. Journal of Computational Physics, 224(2):560–
586, jun 2007. doi: 10.1016/j.jcp.2006.10.010.

E. R. McGrattan. Application of weighted residual methods to dynamic economic models.
In R. Marimon and A. Scott, editors, Computational Methods for the Study of Dynamic
Economies, pages 114–142. Oxford and New York: Oxford University Press, 1999.

M. Riesz. Sur le problème des moments et le théorème de Parseval correspondant.
Scandinavian Actuarial Journal, 1924(1):54–74, 1924. doi: 10.1080/03461238.1924.
10405368. URL https://doi.org/10.1080/03461238.1924.10405368.

F. J. Ruge-Murcia. Methods to estimate dynamic stochastic general equilibrium models.
Journal of Economic Dynamics and Control, 31(8):2599–2636, aug 2007. doi: 10.1016/
j.jedc.2006.09.005.

C. Sims. Solving Linear Rational Expectations Models. Computational Economics, 20(1):
1–20, Oct. 2002.
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A ORTHOGONAL POLYNOMIALS

We give a short overview for the families of orthogonal polynomials summarized in Table
2. More details, in particular regarding their completeness in the respective Hilbert spaces
L2 of square integrable functions, can be found in Szegő (1939).

A.1 Hermite Polynomials

Hermite polynomials are defined by the recurrence relation

H0(x) = 1, H1(x) = 2x , Hn+1(x) = 2x Pn(x)− 2nPn−1(x), n≥ 2

and form a complete orthogonal system on L2(R,B(R), w̃(x)dx) with weighting function

w̃(x) := e−x2
.

More specifically,
∫

R
Hn(x)Hm(x)w̃(x)dx = 2n(n!)

p
πδn,m

The probability density function of a normal distributed random variable θ ∼ N(µ,σ2)
with mean µ and variance σ2 is given by

fθ (ϑ) =
1

p
2πσ

e−
(ϑ−µ)2

2σ2 .

Fixing the transformation between the germ and θ in this case to

ψ(s) := µ+
p

2σs

so that the germ ξ is defined by

ξ :=ψ−1(θ ) =
θ −µ
p

2σ

implies that ξ has probability density function

w(s) = fθ (ψ(s))ψ
′(s) =

1
p
π

e−s2
=

1
p
π

w̃(s).

Since w differs from w̃ only by a constant factor, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s)ds) = L2(R,B(R), w̃(s)ds),

and that Hermite polynomials also form a complete orthogonal system in L2(R,B(R), dPξ)
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with
∫

R
Hn(s)Hm(s)dPξ(s) =

∫

R
Hn(s)Hm(s)w(s)ds =

1
p
π

∫

R
Hn(s)Hm(s)w̃(s)ds = 2n(n!)δn,m.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Hermite-quadrature
rule for weighting function w̃, the Gauss-quadrature rule in terms of weighting function w
has the same nodes while the weights are scaled by ω j =

ω̃ jp
π

.

A.2 Legendre Polynomials

Legendre polynomials are defined by the recurrence relation

L0(x) = 1, L1(x) = 2x , (n+ 1)Ln+1(x) = (2n+ 1)x Ln(x)− nLn−1(x), n≥ 2

and form a complete orthogonal system in L2([−1, 1],B([−1,1]), dx), i.e.

∫ 1

−1

Ln(x)Lm(x)dx =
2

2n+ 1
δn,m.

The probability density function of an uniformly distributed random variable θ ∼ U[0,1]
over [0,1] is given by

fθ (ϑ) = 1[0,1](ϑ) :=

¨

1, if ϑ ∈ [0, 1]
0, if ϑ ∈ R \ [0, 1]

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s+ 1

2

so that the germ ξ is defined by

ξ :=ψ−1(θ ) = 2θ − 1

implies that ξ has probability density function

w(s) = fθ (ψ(s))ψ
′(s) =

1
2
1[−1,1](s).

Hence, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s)ds)' L2([−1, 1],B([−1,1]), ds),

and consequently the Legendre polynomials also form a complete orthogonal system in
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L2(R,B(R), dPξ) with

∫

R
Ln(s)Lm(s)dPξ(s) =

∫

R
Ln(s)Lm(s)w(s)ds =

1
2

∫ 1

−1

Ln(s)Lm(s)ds =
1

2n+ 1
δn,m.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Legendre quadrature
rule for weighting function w̃, the Gauss-quadrature rule in terms of weighting function w
has the same nodes while the weights are scaled by ω j =

ω̃ j

2 .

A.3 Jacobi Polynomials

Jacobi polynomials are defined by the recurrence relation

J (α,β)
0 (x) = 1,

J (α,β)
1 (x) =

1
2
(α− β + (α+ β + 2)x),

a1,nJ (α,β)
n+1 (x) = (a2,n + a3,n x)J (α,β)

n (x)− a4,nJ (α,β)
n−1 (x), n≥ 2

where

a1,n = 2(n+ 1)(n+α+ β + 1)(2n+α+ β),

a2,n = (2n+α+ β + 1)(α2 − β2),
a3,n = (2n+α+ β)(2n+α+ β + 1)(2n+α+ β + 2),
a4,n = 2(n+α)(n+ β)(2n+α+ β + 2).

They form a complete orthogonal system on L2([−1, 1],B([−1,1]), w̃(x)dx)with weight-
ing function

w̃(x;α,β) := (1− x)α(1+ x)β .

More specifically,

∫ 1

−1

J (α,β)
n (x)J (α,β)

m (x)w̃(x;α,β)dx =
2α+β+1

2n+α+ β + 1
Γ (n+α+ 1)Γ (n+ β + 1)
Γ (n+α+ β + 1)n!

δnm.

The probability density function of a Beta-distributed random variable θ ∼ Beta(α,β)
with shape parameters α and β is given by

fθ (ϑ;α,β) =
1

B(α,β)
ϑα−1(1− ϑ)β−1

1[0,1](ϑ).25
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Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s+ 1

2

so that the germ ξ is defined by

ξ :=ψ−1(θ ) = 2θ − 1

implies that ξ has probability density function

w(s;α,β) = fθ (ψ(s);α,β)ψ′(s) =
1

B(α,β)

�

s+ 1
2

�α−1�

1−
s+ 1

2

�β−1 1
2
1[−1,1](s)

=
21−α−β

B(α,β)
(s+ 1)α−1(1− s)β−1

1[−1,1](s) =
21−α−β

B(α,β)
w̃(s;β − 1,α− 1)1[−1,1](s).

Since w(s;α,β) differs from w̃(s;β − 1,α− 1) only by a constant factor, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s;α,β)ds)'
' L2([−1, 1],B([−1,1]), w̃(s;β − 1,α− 1)ds),

and that the Jacobi polynomials {J (β−1,α−1)
n }n∈N0

also form a complete orthogonal system
in L2(R,B(R), dPξ) with

∫

R
J (β−1,α−1)

n (s)J (β−1,α−1)
m (s)dPξ(s) =

∫

R
J (β−1,α−1)

n (s)J (β−1,α−1)
m (s)w(s;α,β)ds =

=
21−α−β

B(α,β)

∫ 1

−1

J (β−1,α−1)
n (s)J (β−1,α−1)

m (s)w̃(s;β − 1,α− 1)ds =

=
1

B(α,β)(2n+α+ β − 1)
Γ (n+ β)Γ (n+α)
Γ (n+α+ β − 1)n!

δnm.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Jacobi-quadrature
rule for weighting function w̃(.,β−1,α−1), the Gauss-quadrature rule in terms of weight-
ing function w(.,α,β) has the same nodes while the weights are scaled by ω j =

21−α−β

B(α,β) ω̃ j.

A.4 Generalized Laguerre Polynomials

Generalized Laguerre polynomials are defined by the recurrence relation

La(α)0 (x) = 1,

La(α)1 (x) = 1+α− x ,

(n+ 1)La(α)n+1(x) = (2n+ 1+α− x)La(α)n (x)− (n+α)La(α)n−1(x), n≥ 2

25We denote by B(x , y) the beta function.
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They form a complete orthogonal system on L2([0,∞),B([0,∞)), w̃(x)dx)with weight-
ing function

w̃(x;α) := xαe−x .

More specifically,
∫ ∞

0

La(α)n (x)La(α)m (x)w̃(x;α)dx =
Γ (n+α+ 1)

n!
δnm.

The probability density function of a Gamma-distributed random variable, denoted by
θ ∼ Gamma(α,β), with shape parameter α and rate parameter β is given by

fθ (ϑ;α,β) :=
βα

Γ (α)
ϑα−1e−βϑ1[0,∞)(ϑ).26

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s
β

so that the germ ξ is defined by

ξ :=ψ−1(θ ) = βθ

implies that ξ has probability density function

w(s;α,β) = fθ (ψ(s);α,β)ψ′(s) =
βα

Γ (α)

�

s
β

�α−1

e−s 1
β
1[0,∞)(s) =

=
1
Γ (α)

w̃(s;α− 1)1[0,∞)(s).

Since w(s;α,β) differs from w̃(s;α− 1) only by a constant factor, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s;α,β)ds)' L2([0,∞),B([0,∞)), w̃(s;α−1)ds),

and that the generalized Laguerre polynomials {La(α−1)
n }n∈N0

also form a complete orthog-

26We denote by Γ (x) the gamma function.
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onal system in L2(R,B(R), dPξ) with

∫

R
La(α−1)

n (s)La(α−1)
m (s)dPξ(s) =

∫

R
Laα−1)

n (s)J (α−1)
m (s)w(s;α,β)ds

=
1
Γ (α)

∫ ∞

0

La(α−1)
n (s)La(α− 1)m(s)w̃(s;α− 1)ds

=
Γ (n+α)
Γ (α)n!

δnm.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Laguerre-quadrature
rule for weighting function w̃(.,α − 1), the Gauss-quadrature rule in terms of weighting
function w(.,α,β) has the same nodes while the weights are scaled by ω j =

ω̃ j

Γ (α) .

B SMOLYAK-GAUSS-QUADRATURE

Suppose that for every i = 1, . . . , k the distribution Pξi
of ξi possesses a probability density

function wi, so that w :=
∏k

i=1 wi is the probability density of Pξ. Then (13) becomes

ŷα = ‖qα‖−2
L2

∫

R
. . .

∫

R
h(ψ(s1, . . . , sk))q1α1

(s1) . . . qkαk
(sk)w1(s1) . . . wk(sk)ds1 . . . dsk. (17)

Further suppose that one-dimensional Gauss-quadrature rules corresponding to weight-
ing functions wi and orthogonal polynomials {qin}n∈N0

are available. For i = 1, . . . , k let

Q i(Mi) denote this one-dimensional Gauss-quadrature rule with Mi nodes {s( j)i,Mi
} j=1,...,Mi

and weights {ω( j)i,Mi
} j=1,...,Mi

, i.e.

Q i(Mi)g :=
Mi
∑

j=1

ω
( j)
i,Mi

g(s( j)i,Mi
) for g ∈ L2

i .

Then choose for each i = 1, . . . , k an increasing sequence of natural numbers {Mi j} j∈N ⊂
N, Mi j+1 > Mi j and define the difference operator by

∆i1 :=Q i(Mi1) and ∆i j :=Q i(Mi j)−Q i(Mi j−1), j ≥ 2.

The Smolyak-Gauss-quadrature rule of order l ∈ N and with growth rules given by {Mi j} j∈N
is defined by

Q l :=
∑

ν∈Nk

|ν|≤k+l

k
⊗

i=1

∆iνi
.
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or equivalently taking care of duplicate terms in the difference operators

Q l =
∑

ν∈Nk

max{k,l+1}≤|ν|≤k+l

(−1)k+l−1
�

k− 1
k+ l − |ν|

� k
⊗

i=1

Q i(Miνi
).

Applying the Smolyak-Gauss-quadrature rule to (17) in particular yields the approximation

ŷα ≈

�

k
∏

i=1

‖qiαi
‖2

L2
i

�−1
∑

ν∈Nk

max{k,l+1}≤|ν|≤k+l

(−1)k+l−1
�

k− 1
k+ l − |ν|

�

M1,ν1
∑

j1=1

. . .

Mk,νk
∑

jk=1

ω
( j1)
1,M1,ν1

. . .ω( jk)k,Mk,νk
h
�

ψ
�

s( j1)1,M1,ν1
. . . s( jk)k,Mk,νk

��

q1α1

�

s( j1)1,M1,ν1

�

. . . qkαk

�

s( jk)k,Mk,νk

�

.

This procedure requires to evaluate the model outcome of interest h
�

ψ
�

s( j1)1,M1,ν1
. . . s( jk)k,Mk,νk

��

at all sparse-grid points.
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