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Abstract

Efficiency measurement naturally requires the definition of a frontier
as a benchmark indicating efficiency. Usually a measure reflecting the
distance of a data point to the frontier indicates the level of efficiency.
One of the crucial characteristics to distinguish efficiency measurement
tools is the way in which they construct the frontier.
The class of deterministic and non parametric tools of constructing

the frontier mainly comprises of tools associated with Data Envelopment
Analysis. Coming in various flavors all DEA frontiers suffer of their piece-
wise construction giving rise to numerous vertices. Those vertices do not
allow convenient analysis of the frontier properties such as computing
elasticities and the like.
In this paper we want to contribute to the class of deterministic and

non parametric tools of constructing the frontier in an one output and n
input setting. We suggest a new empirical approach drawing on functional
search in the fashion of Koza’s (1992) genetic programming. The frontier
search algorithm employed evolves the functional form of the frontier and
the parameters simultaneously. The frontier exhibits the neat property
that it is smooth and differentiable enabling the computation of elasticities
for example.
In particular we introduce both the idea and the algorithm of the fron-

tier search procedure. We discuss the advantages and shortcomings with
respect to empirical problems. The arguments brought forth in the pre-
ceding sections are illustrated by the investigation of an artificial example.

1 Introduction

Any effort to determine the efficiency of several DMUs characterized by a given
data set starts with the decision of the researcher how to construct the frontier
that defines the efficient combinations of inputs and output. If one looks at
the different methodologies that can be used one has to trade off smoothness of
the frontier with information required to construct the frontier. The question
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(among others) is whether to employ a parametric method to yield a smooth and
differentiable frontier of an assumed shape or to use non-parametric methods
and get a frontier that is not differentiable due to several edges and vertices.
The latter clearly has an informational advantage, whereas the former has an
appeal due to smoothness.

In the following we introduce a frontier search algorithm that tries to combine
both advantages. The frontier constructed by the algorithm is smooth and
differentiable and the construction of the frontier needs - we would claim - even
less assumptions than the construction of a data envelopment frontier in the
vein of Charnes, Cooper and Rhodes (1978) or Banker, Charnes and Cooper
(1984) and others.

2 Construction of a frontier as a search problem

Inefficiencies of DMUs are assessed on the bases of their distance to the best
practice set of DMUs or to the efficient frontier. As the true efficient frontier is
unknown a key methodological issue arises in constructing the frontier from a
given data set. Hence, all techniques used for efficiency measurement, search for
an appropriate frontier to be able to asses the inefficiencies. Those techniques
can be discriminated by two features:

• the assumptions made concerning the frontiers

• the procedures generating the frontier.

The first discriminating characteristic, referring to stochastic versus deter-
ministic frontiers has been discussed extensively (e.g. Greene (1993), Lovell
(1993)). With the latter we want to distinguish whether the frontiers are gener-
ated by a deterministic procedure or whether they are created by a randomized
algorithm. This characteristic, however, has not yet caught any attention in
the literature, as major efficiency measurement techniques, data envelopment
analysis and stochastic frontier estimation in particular, employ deterministi-
cally generated frontiers for efficiency measurement. The differences of creating
the frontiers by a deterministic procedure or by a randomized procedure be-
comes obvious if we look at the process of creating a frontier as being a search
problem. The frontier then can be interpreted as the solution to the search
problem. The different methodologies for efficiency measurement are equivalent
to different strategies to finally arrive at the desired solution, frontier that is.
If the strategy starting with identical situations, i.e. using the same data set
and the same model with identical specification, always produces the same path
through the search space to arrive at the solution then we call the procedure a
deterministic one. In this case the final frontiers do not differ. If, however, the
path through the search space varies even if the starting point is the same, we
will speak of a randomized procedure. The procedure might not come up with
the same solutions after repeated runs using the same starting conditions.

To illustrate these points we briefly turn to DEA and stochastic frontier
in the following paragraphs before introducing the genetic frontier search algo-
rithm.
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2.1 Data envelopment analysis

A basic model

In data envelopment analysis the efficiency measure for any DMU is optimized,
minimized or maximized depending on the orientation of the model, subject to
some constraints reflecting the assumption posed on the technology as well as
the production possibilities represented by the data. Take for example the linear
program in (1), the dual of the output oriented BCC DEA model (Banker et al.
(1984)), where the index z0 for firm 0 has to be maximized:

max
φ,λ0,

z0 = φ0 (1)

subject to

φ0y0 − yλ0 ≤ 0
Xλ0 ≤ x0

�1λ0 = 1
λ0 ≥ 0

where φ denotes the efficiency measure, y is the D-vector of outputs yi and
X is the matrix and inputs. xi indicates the vector associated with the DMU i
and the index 0 points to the DMU under inspection. Computing the efficiency
of all D DMUs in the data set requires D linear programs in the fashion of (1).

The frontier

The nature of the DEA formulation is, that the frontier function is not explicitely
given, rather is it constructed within the model. No particular functional form is
assumed for the frontier, in that sense it is non-parametric. In a more narrowly
defined sense it is not completely non-parametric, as the model bases on the
implicit assumption of piece-wise linearity. Deviation from the efficient frontier
is assumed to be due to inefficiency only, giving rise to the assumption of a
deterministic frontier.

The shape of the frontier, however, reveals a great disadvantage. The piece-
wise linear composition of the frontier gives rise to several edges and vertices.
Hence the frontier is not differentiable in the whole domain. So unique elastici-
ties can not be computed for the entire domain. What makes things even worse
is the fact that unique elasticities cannot be determined for a large fraction of
the efficient units as edges and vertices are created by those.

The search

Solving the D linear programming problems in equation (1) is the process of
searching for the values of the parameters φ0 and λ0 for each of theD DMUs. As
φ0 is a scalar and λ0 is anD-vector the space to be searched to find the appropri-
ate values is R(1+D)D. As a search algorithm the basic Simplex-algorithm can
be used to obtain the optimal values of the parameters. The Simplex-algorithm
can be interpreted as a deterministic search algorithm guiding the search on a
deterministic path through the search space to arrive at the optimal solution.
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2.2 Stochastic frontier estimation

A basic model

Stochastic frontier estimation was introduced simultaneously by Meussen and
van den Broek (1977) and Aigner, Lovell and Schmidt (1977). As the term
indicates, it maintains a different assumption about the frontier. Deviations
from the production function are due to two different influences. The first one
concerns random deviations whereas the second one is attributed to inefficient
production, in (2) denoted by vi and ui respectively. As simple model of the
stochastic frontier is

yi = g(Xi, β) + vi − ui (2)

where g(., .) is a production function specified in functional form β is the s-
vector of parameters. vi is drawn from a symmetric distribution, usually normal
and ui is drawn from a one-sided distribution, usually half-normal.

The frontier

The functional form of g(., .) has to be supplied beforehand. Hence stochas-
tic frontier estimation represents a parametric estimation method. Most of
the times the functional form of g(., .) is selected to yield a differentiable fron-
tier. With a differentiable frontier, however, no problem arises when computing
elasticities, such as scale elasticity or elasticities of substitution between input
factors.

The search

In (2) β is the s-vector of the parameters to be searched for. The parameters
have to be chosen such that the probability of realizing the given data set
is maximized. Hence the search space is Rs, that can be searched by MLE
algorithm guiding the search deterministically to the desired parameter vector.

2.3 Genetic Frontier Search

At this point of the discussion it seems as if there existed a trade-off between
flexibility of the frontier created by a non-parametric method, in the case of
DEA, and differentiability, in the case of a stochastic frontier. With the genetic
frontier search algorithm we propose below, we attempt to losen the trade-off.
In particular we introduce a search algorithm to find a frontier function with
the property of being non-parametric and differentiable at the same time. The
methodology, however, that we call genetic frontier search differs considerably
from both DEA and stochastic frontier estimation as it is a randomized proce-
dure for frontier construction.

In its primal representation DEA constructs the non-parametric frontier by
searching for the appropriate weights. This burns down to pasting together
linear pieces of the frontier. The stochastic frontier approach takes a given
functional form and adjusts the parameters accordingly.

The idea of our frontier search algorithm is to combine both mechanisms.
The frontier function does not have a predefined functional form, rather is it
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composed of the parameters and several nested and combined primitive func-
tions, such as Plus, Minus, Times, Power, Exp , . . .. The functional form and
the parameters are searched for simultaneously. The next section will introduce
the Genetic Frontier Search algorithm in more detail.

3 The Genetic Frontier Search Algorithm

3.1 The basic idea

The bases of the genetic frontier search algorithm can be found in the genetic
programming approach recently introduced by Koza (1992) to solve complex
optimization problems. A small collection of genetic programming applications
in economics can be found in Koza (1992) and Schmertmann (1996).

The genetic frontier search algorithm constructs a sequence of populations
each containing a number of candidate frontiers. Applying Darwinian ideas and
simulating evolution on the populations the algorithm increases their overall
quality – what we mean by quality of the population will be talked about in
section 3.4 below. The best candidate frontier in the final population of the
evolution is the result of the genetic frontier search.1

To start the search process the algorithm first generates a random population
of a large number of individual frontier-functions. Those frontiers are evaluated
on how good they envelop the given data cloud and are assigned a real number
accordingly. This number indicates the fitness of the individual frontier function.
The next generation is created by selecting the candidate frontiers depending on
their fitness and applying genetic operators before they enter the new generation.
Any individual frontier in this generation is again evaluated on how good it is
in wrapping the data cloud. The best frontiers are selected and transformed to
enter the successive generation .... and so forth. By repeating this procedure for
several generations the fitness of the best individual frontier in the generation
improves and a solution to the frontier search problem emerges.

The idea ruling the algorithm is the paradigm of evolutionary computing that
good individuals are built from good components (building blocks, schema) and
the recombination of those good building blocks leads to even better building
blocks, creating ever improving individuals in the course of time.

Assumptions

Before we begin with setting up the algorithm we have to make a some assump-
tions for the frontier search to work.

Assumption 1 We assume that there exists a best practice production fron-
tier specified as y0 = g(x, z), where y0 represents the efficient level of pro-
duction of a single output. x = (x1, x2, . . . , xν) is the vector of inputs and
z= (z, z, z, . . . , zk) is a vector of parameters. Additionally g(x, z) is differen-
tiable and concave in x.

1As the algorithm uses mechanisms that are analogous to concepts in evolutionary biology
it has become common to use of the corresponding terminology as a metaphor only (see e.g.
Koza (1992)) that might not be in perfect accordance with the features biologists attach to
the terminology. Talking about a final generation of evolution is clearly flawed in terms of the
biological idea of evolution. However in the case of the simulated evolution we have to stop
the process at one point that will be discussed in section 3.6.
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Assumption 2 We assume that deviation from y0 is only due to inefficient
production. For the time being, there are no measurement errors to be consid-
ered.

From assumption 2 we can see that εi = g(xi)/yi is the a inefficiency measure
for an observation i (i = 1 . . . D) where xi is the vector of inputs and yi is the
output of DMU i.

Assumption 3 We further assume that g(., .) is the function that gives rise to
the minimal sum of the inefficiencies.

Task

The task of the frontier search algorithm is to find a function s∗(., .) that ap-
proximates g(.). This is searching for a function s∗ that minimizes the overall
inefficiency in the sample of D DMUs subject to the constraints imposed by
assumption 1 and assumption 2.

The information available to the search process is the data set (y,X) con-
taining the output and input information of D the DMUs. No prior knowledge
about the functional form of s∗(., .) and both the number k and the size of the
parameters (z, z, z, . . . , zk) =z is available.

Instead the frontier search algorithm is supplied with two sets of com-
ponents: F = {f1, f2, f3, . . . , fk} is the set of primitive functions and T =
{τ1, τ2, τ3, . . . , τl} is the set of terminals such as variables and constants. The
frontier search tries to create s∗ from the components of F ∪T hence the search
space S of the genetic frontier search contains any possible function s composed
from elements of F ∪ T .

This yields the following problem formulation:

min
∑D

i=1 s(xi, z)/yi (3)
subject to

s(xi, z)− yi is not negative ∀i
s(x, z) is concave in x

s(x, z) is differentiable in x
s(x, z) can be composed from elements of F ∪ T

Note that the set of primitive functions and the set of terminals has to be
defined such that their union complies with the requirement of sufficiency (Koza
1992). This demands that there exists a function built from the components
of F ∪ T that complies with the constraints in (3). As we assumed that there
exists a function g(., .) which is real valued by the nature of the problem, the
Weierstrass’ lemma (e.g. (Gamkrelidze 1990)) or Yao (1999) guide to sufficient
F and T . As one of the constraints in problem 3 points to differentiability of the
solution the elements in F have to be differentiable as to yield a differentiable
composite function s∗.

3.2 The Representation

As the frontier search algorithm searches for a function s by successively chang-
ing the representation of s, the frontier function has to represented as to allow
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for easy modification within the algorithm. Therefore the candidate frontier
functions are represented in a tree like structure. An example tree is displayed
in figure 1.

Figure 1: An example tree
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The frontier function displayed in figure 1 reads in standard mathematical
notation: (x0.930.88)

x
x+x . The nodes of the trees are represented by primitive

functions drawn from F whereas the leaves are elements drawn from T . As we
will see later the tree like representation of the frontier function enables easy
manipulation of the frontier function.

3.3 The Population

The population Pt at time t is a set of N individuals each being a candidate
frontier si,t where si,t ∈ S, hence Pt ∈ SN

Pt = {s1,t, s2,t, s3,t, . . . , sN,t}. (4)

3.4 The Fitness Function

The measure how well each individual candidate frontier does its job in envelop-
ing the data cloud defines the shape of the algorithm’s result in the same way
as a particular ecological niche shapes its inhabitants through natural evolu-
tion. Therefore all desired frontier properties should be taken account of while
designing the fitness function.

As the task of the individual function is to represent a ’good’ frontier to the
data set the fitness function Φ assigns the candidate functions a real number,
the fitness, indicating how good the candidate frontier envelopes the data cloud
(y,X).

Φ : S −→ R (5)

The fitness consists of at least two components. The first component depends
on the sum of the distances εi between the frontier and the data cloud and serves
as a measure of how close the frontier wraps the data cloud. It is this component
of the fitness that directs the search towards frontiers that minimize the overall
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distance between the frontier and the data cloud. Hence, it minimizes the overall
inefficiency.

The second component maintains the assumption of a deterministic frontier
as posed in assumption 2. Any negative deviation from the frontier is regarded
as inefficient production. Positive deviation from the frontier will not be allowed
as indicated in the constraints of problem (3). Any candidate frontier with data
points ’above’ it is not considered a valid frontier to the data set. Thus it is
assigned a prohibitively bad fitness to prevent the frontier from contributing to
the next generation.

At this point of the discussion we have to stress the flexible nature of the
genetic frontier search algorithm. Any other property (e.g. certain scale prop-
erties etc.) that one wants the frontier to exhibit can be implemented in the
fitness function by adding another component in the same fashion as component
two.2 Violation of the desired property will result in a prohibitively bad fitness.

We can now rank the elements of the population Pt according to their fitness.
The indexing function ω(i) does the job. ω(1) is the index of the best individual
in population Pt, ω(2) is the index of the second best individual, ω(N) the
index of the worst individual as measured by the fitness function. Hence sω(1)

is the best individual in population Pt.

3.5 The Intergenerational mapping

The crucial part in a genetic programming based algorithm is the intergenera-
tional mapping G transforming generation Pt into Pt+1.

G : SN −→ SN (6)

The intergenerational mapping G includes the genetic operations that – to-
gether with the population approach – create the evolutionary nature of the
algorithm. One can think of G being the composition of several primitive ge-
netic operators: selection for parenthood (Gp), crossover (Gc), mutation (Gm)
and selection to maintain a constant population size (Gs). .

3.5.1 Selection

Gp selects π parent individuals from the present population, those are going to
be transformed to build offsprings in the subsequent population.

Gp : SN −→ Sπ (7)

The selection criterion serves as the basic Darwinian mechanism to improve
the overall fitness of the populations in the course of time. To implement the
survival of the fittest it chooses the individuals randomly where the rule holds
that the more favorable the fitness of an individual the more likely it is selected.
Koza (1992) suggests three types of selection: rank order selection, tournament
selection, and fitness proportionate selection. Rank order selection produces
a weaker selection pressure more favorable to unfit candidate frontiers. It is

2In some cases, however, it might be computationally more convenient to specify a property
that has to be fulfilled by the result of the algorithm but not by the best individuals of all
preceding generations. If this is the case one can check the property in a post-processing step
after termination of the algorithm and rerun the algorithm in case the property is violated.
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often used when large differences in fitness within the population are present.
Although we have large differences in the fitness created by the second compo-
nent of the fitness function, we want them to exert their influence on selection.
Tournament selection is the artificial analogon to two bulls fighting, the win-
ner mating with a given cow and the offspring immediately being member of
the present generation. This selection criterion does not support the notion of
discrete generations. Hence we choose fitness proportionate selection for the
genetic frontier search algorithm. The probability of a candidate frontier to be
selected for parenthood is proportionate to the individual’s normalized fitness
which is an increasing function of the individual’s quality.

3.5.2 Crossover

Gc creates one offspring from the π parents by applying the crossover operator.

Gc : Sπ −→ S (8)

A subtree of each of the π parents is selected randomly, where each node
of the tree has the same probability of being chosen as the root node of the
subtree. Then the parents exchange the subtrees to create actually π offsprings.
One of the offsprings is selected to be the offspring of the π parents.3

An example crossover involving two tree structures is displayed in figure 2.

3.5.3 Mutation

Gm takes the offspring generated byGc and mutates it with a certain probability.

Gm : S −→ S (9)

Subtree mutation chooses the root of a subtree randomly from the nodes
and leafs of the tree being mutated. Then the adjacent subtree is replaced by a
randomly generated subtree. If a leaf is selected as the root of the subtree and
the randomly generated subtree only consists of a leaf we have the special case
of a point mutation. Hence point mutation is a subclass of subtree mutation.
Subtree mutation is depicted in figure 3.

3.5.4 Maintaining the population size

Gs is the genetic primitive function that maintains the population size at a level
of N members. Gs is designed in a way as to select the N best individuals from
an overpopulated population of � members.

Gs : S� −→ SN (10)

The overpopulated population of � members consists both of �O offsprings
created by the genetic operations and of the �P best members of the parent
generation indicated by the indexing function ω(i) where i ∈ {1, 2, . . . �P }. The
best candidate frontier in population Pt is svarrho(1),t, the second best candidate
frontier in the population is svarrho(1),t and so forth.

3Let us assume that within the selection process following immediately after the crossover
all π offsprings have the same probability of being selected. If we set out to choose the fittest
among the offsprings, which implies the fitness function having been applied to each of the
offsprings, we have a crossover similar to the brood crossover suggested by Tackett (1994).

9



Figure 2: Subtree crossover
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Figure 3: Subtree mutation
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3.5.5 Composition of the intergenerational mapping

From the above components of the intergenerational mapping function G one
can basically compose two different configurations that can constitute a frontier
search routine. The first and simpler configuration is composed only of Gp, Gc

and Gs which amounts to a genetic programming algorithm only consisting of
selection, reproduction and crossover.

G1(.) = Gs({Gc ◦ Cp(.), Gc ◦Gp(.), . . . , Gc ◦Gp(.)︸ ︷︷ ︸
�P

} ∪ {sω(1),t, sω(2),t . . .︸ ︷︷ ︸
�O

}) (11)

The second configuration G2 of the intergenerational mapping function G
can be composed of all primitive functions Gp, Gc, Gm and Gs.

G2(.) = Gs({Gm ◦Gc ◦ Cp(.), . . . , Gm ◦Gc ◦Gp(.)︸ ︷︷ ︸
�P

} ∪ {sω(1),t, sω(2),t . . .︸ ︷︷ ︸
�O

}) (12)

It can be shown that the intergenerational mapping G1 is not sufficient to
guarantee that the solution s∗, even though it exists, will be found (Ebersberger
2000). However configuration G2 secures that the solution s∗ will be found by
the search algorithm within a finite number of iterations regardless of the initial
population P0 (Rudolph 1998, Ebersberger 2000). This leads us to abandoning
G1 and to use configuration G2 of the intergenerational mapping for the frontier
search.
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3.6 The termination condition

In many applications of the genetic programming approach it might be useful
to stop the evaluation once a certain level of approximation is achieved. As the
fitness of each candidate frontier indicates a measure of the overall inefficiency
being present in the sample and there is no a priori knowledge on its size,
we cannot implement a criterion terminating the run in case the fitness falls
below a certain threshold. So the run terminates after a maximum number of
γ generations.

Although there is no general rule that can be applied to figure out the
optimal number of generations, it can be concluded that the maximum number
of generations should increase with the complexity of the situation analyzed.
Hence it should grow with the number of DMU’s and with the number of inputs.
In our example application here we set the maximum number of generations γ
to 50.

At this point of the discussion it becomes obvious, what purpose Gs serves in
the intergenerational mapping function. Gs allows to transfer the best individual
of the parent generation to the next generation if the offsprings do not surpass
the best fitness in the parent generation. By doing this we can make sure that
the fitness of the best individual does not decrease over time. Hence a too large
maximum number of generations γ does not harm the fitness of best individual,
merely it increases computation time.

3.7 The algorithm

Having defined the necessary components and their properties we can now state
the frontier search algorithm briefly:

Figure 4: The frontier search algorithm

Create P0 from F and T
t = 0
Repeat

Pt+1 = G2(Pt)
t = t+ 1

for γ generations
Return sω(1),t

4 An artificial example

To illustrate the properties of the frontier search and to show how the genetic
frontier search algorithm approximates a given data set, we simulated a one
input one output data set with 20 DMUs.
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Table 1: Data

DMU Input Output Eff.Score

DMU1 0.384731 0.148735 1.00
DMU2 0.434705 0.685458 1.82
DMU3 0.608727 0.864081 1.45
DMU4 0.415110 0.201750 1.07
DMU5 0.616597 0.564039 1.17
DMU6 0.535586 0.667698 1.46
DMU7 0.544541 0.775683 1.54
DMU8 0.438632 0.537460 1.61
DMU9 0.398157 0.256440 1.25
DMU10 0.369565 0.405442 1.67
DMU11 0.603906 0.442009 1.06
DMU12 0.187088 0.114276 1.82
DMU13 0.330528 0.131704 1.10
DMU14 0.430582 0.664070 1.81
DMU15 0.717651 0.901329 1.25
DMU16 0.114361 0.035825 1.73
DMU17 0.802817 0.737389 1.02
DMU18 0.824814 0.755796 1.00
DMU19 0.786873 0.928470 1.16
DMU20 0.197487 0.053924 1.21
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4.1 The artificial data set

Table 1 shows the input and output data of 20 artificial units for which the
best practice frontier is generated by the genetic frontier search algorithm.4

We simulated a production function y = rx0.5, where x denotes the normalized
inputs taken randomly from ]0, 1] and r is a random inefficiency term drawn from
a uniform distribution in [0.5, 1]. Thus the best-practice frontier represented by
our sample lies on or below the graph of x0.5.

4.2 Specification of the frontier search algorithm

Table 2 shows the default specification of the frontier search algorithm for our
example here.

Table 2: Specification of the search algorithm

Characteristic default value

Objective Find the best-practice frontier of the
data set

Function set Plus, Minus, Times, Divide, Power,
Exp

Terminal set x, Random constants from [0.8, 1]

Data set Data set displayed in table 1

Fitness Sum of errors + 1010 if data point is
above the frontier

Genetic operators Copy, reproduction, crossover, muta-
tion

Halting condition Terminate after generation 50.

No. of individuals 200.

Post processing Check for concavity. Transform the
function to standard mathematical no-
tation.

Peculiarities Crossover implemented as brood
crossover (Tackett 1994). Adap-
tive parsimony pressure (Zhang and
Mühlenbein 1995)

4Column 4 already contains the inefficiency measures as they will be computed for the
frontier genterated by the genetic frontier search algorithm.
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4.3 Evolution of the frontier

Starting with 200 randomly created candidate frontiers the algorithm evolves a
highly fit frontier for the data within 17 generations. Figures 5 to 10 show the
graphs of the best individual frontiers in generation 1, 2, 3, 4, 5 and 17.

We observe the frontier bending and moving towards the data cloud, finally
wrapping it quite neatly. The frontier is y = 0.9423x0.4692. It gives rise to
the inefficiencies displayed in column 4 of table 1. This production frontier is
differentiable on [0, 1], hence it causes no trouble when it comes to calculating
the scale elasticity. In this respect the frontier generated by the genetic frontier
search algorithm has a clear advantage compared to the non-parametric DEA
methodology.

4.4 Genotype and phenotype

The simulated evolution of the frontier can be traced in the graphs in figure 5
to figure 10. The features of the frontiers like their graphical representation or
the overall inefficiency it gives rise to are the phenotype. It is the phenotype
that determines whether the individual will be selected for parenthood and the
genotype will be passed on to the next generation.

The genotype, the tree representation, of the best individuals is depicted
in figures 11 to 16. It changes both structure (the shape of the trees) and
content (the content of the nodes and leaves) simultaneously. Looking at the
phenotype we see that the simultaneous change of structure and content of the
genotype is the true cause for evolving the functional form and the parameters
simultaneously.

4.5 Inventing necessary components of the frontier

The genetic frontier search exhibits a nice and desirable feature one would be
inclined to call creativity. It creates components that are necessary for a frontier
from the given function set and the given set of variables and constants. To
illustrate this in our example we restricted the range of random constants from
0.8 to 1.0, knowing from the simulated data that a good candidate frontier
would need an exponent less than or equal to 0.5.

Hence the algorithm has to find a way to accommodate this restriction in the
supply of components. As we can see in figure 16 It sets out to take the square
root of the constant 0.9385 to create the constant 0.4692. As square root is not
supplied as a primitive function the algorithm used the power function. The
necessary exponent 0.5, again not available as a constant, is created by x

x+x .
This feature, generating almost any function and constant from the given

sets of functions, constants and variables, relaxes the need for the researcher to
supply any possible component. The non parametric nature of the algorithm
is underlined once again. This, however, does not mean that the researcher
can supply what ever he feels like supplying and the algorithm will remedy any
shortcoming. Any component that is not supplied and has to be created endoge-
nously by the algorithm reduces its efficiency and increases the computational
complexity considerably.
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Figure 5: Best candidate frontier sω(1),1

in generation P1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 6: Best candidate frontier sω(1),2

in generation P2
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Figure 7: Best candidate frontier sω(1),3

in generation P3
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Figure 8: Best candidate frontier sω(1),4

in generation P4
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Figure 9: Best candidate frontier sω(1),5

in generation P5
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Figure 10: Best candidate frontier
sω(1),17 in generation P17
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Figure 11: Best candidate frontier
sω(1),1 in generation P1
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Figure 12: Best candidate frontier
sω(1),2 in generation P2
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Figure 13: Best candidate frontier
sω(1),3 in generation P3
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Figure 14: Best candidate frontier
sω(1),4 in generation P4
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Figure 15: Best candidate frontier
sω(1),5 in generation P5
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Figure 16: Best candidate frontier
sω(1),17 in generation P17
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5 Properties of the frontier search algorithm

After having displayed an example to the algorithm we can summarize the
properties of the genetic frontier search. The genetic frontier search algorithm
creates a random initial population to start with. It further more selects the
parent frontiers randomly, though based on their individual fitness. Hence, the
algorithm generates a randomized path through the search space. With this the
genetic frontier search markedly differs from both data envelopment analysis
and stochastic frontier.

By nature of a randomized procedure one cannot guarantee that the algo-
rithm generates identical results starting from the same point. The positive
features of the algorithm, its non-parametric nature and the resulting frontier
being supplied in a functional form are traded off by the potential disadvantages
a randomized search creates – there is no free lunch in frontier construction.

To examine the extent of the randomized nature of the algorithm we run it
on the data set of table 1 for another 22 times. The upper and the lower bounds
of the corridor in which all solutions lay are depicted in figure 17.

Figure 17: Upper and lower bounds of the solutions found
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This picture suggests that in our case the randomized nature of the algo-
rithm does not cause large differences in the results. The algorithm produces
comparable results in the different runs we performed on the same data set. To
verify this result on a reliable bases monte-carlo simulation would be necessary.

Table 3 summarizes the properties of DEA, stochastic frontier and the fron-
tier search algorithm introduced here.

6 Conclusion

This paper introduced a genetic programming based methodology to determine
production frontiers. We argue that this procedure combines flexibility on the
functional form with differentiability. The first being the result of the strict
non-parametric nature of the method and the latter being caused by generating
an explicit representation of the frontier. To accomplish this beneficial combi-
nation of characteristics we have to accept a randomized procedure to create
the frontier.
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Table 3: Properties of the frontier search

property DEA stochastic frontier Genetic Frontier
Search

frontier representa-
tion

implicit explicit explicit

frontier not differentiable differentiable differentiable
properties deterministic stochastic deterministic

search algorithm deterministic deterministic randomized

assumption piecewise linear
frontier

functional form and
distribution of the
errors

primitive function
set, domain of the
constants

computational
intensity

low low high

Having discussed the elements of the approach a simple artificial example
has been investigated. The results show

1. that the Genetic Frontier Search comes considerably close to the (hidden)
functional relationship and

2. that despite the randomized nature of the search several runs lead to
results within a small range. This at least holds for the simple example.

We can conclude that the genetic frontier search algorithm presented here
enhances the tool kit of productivity analysis with a methodology that con-
structs non-parametric, differentiable frontier functions in a n input and one
output setting. Further research should enhance the algorithm to a n input and
m output case. Ray production frontiers (see e.g. Kumbhakar (1996)) might be
a good starting point in this regard.
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